| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 | /*							log2l.c * *	Base 2 logarithm, long double precision * * * * SYNOPSIS: * * long double x, y, log2l(); * * y = log2l( x ); * * * * DESCRIPTION: * * Returns the base 2 logarithm of x. * * The argument is separated into its exponent and fractional * parts.  If the exponent is between -1 and +1, the (natural) * logarithm of the fraction is approximated by * *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). * * Otherwise, setting  z = 2(x-1)/x+1), *  *     log(x) = z + z**3 P(z)/Q(z). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0.5, 2.0     30000      9.8e-20     2.7e-20 *    IEEE     exp(+-10000)  70000      5.4e-20     2.3e-20 * * In the tests over the interval exp(+-10000), the logarithms * of the random arguments were uniformly distributed over * [-10000, +10000]. * * ERROR MESSAGES: * * log singularity:  x = 0; returns -INFINITYL * log domain:       x < 0; returns NANL *//*Cephes Math Library Release 2.8:  May, 1998Copyright 1984, 1991, 1998 by Stephen L. Moshier*/#include <math.h>/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 6.2e-22 */#ifdef UNKstatic long double P[] = { 4.9962495940332550844739E-1L, 1.0767376367209449010438E1L, 7.7671073698359539859595E1L, 2.5620629828144409632571E2L, 4.2401812743503691187826E2L, 3.4258224542413922935104E2L, 1.0747524399916215149070E2L,};static long double Q[] = {/* 1.0000000000000000000000E0,*/ 2.3479774160285863271658E1L, 1.9444210022760132894510E2L, 7.7952888181207260646090E2L, 1.6911722418503949084863E3L, 2.0307734695595183428202E3L, 1.2695660352705325274404E3L, 3.2242573199748645407652E2L,};#endif#ifdef IBMPCstatic short P[] = {0xfe72,0xce22,0xd7b9,0xffce,0x3ffd, XPD0xb778,0x0e34,0x2c71,0xac47,0x4002, XPD0xea8b,0xc751,0x96f8,0x9b57,0x4005, XPD0xfeaf,0x6a02,0x67fb,0x801a,0x4007, XPD0x6b5a,0xf252,0x51ff,0xd402,0x4007, XPD0x39ce,0x9f76,0x8704,0xab4a,0x4007, XPD0x1b39,0x740b,0x532e,0xd6f3,0x4005, XPD};static short Q[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/0x2f3a,0xbf26,0x93d5,0xbbd6,0x4003, XPD0x13c8,0x031a,0x2d7b,0xc271,0x4006, XPD0x449d,0x1993,0xd933,0xc2e1,0x4008, XPD0x5b65,0x574e,0x8301,0xd365,0x4009, XPD0xa65d,0x3bd2,0xc043,0xfdd8,0x4009, XPD0x3b21,0xffea,0x1cf5,0x9eb2,0x4009, XPD0x545c,0xd708,0x7e62,0xa136,0x4007, XPD};#endif#ifdef MIEEEstatic long P[] = {0x3ffd0000,0xffced7b9,0xce22fe72,0x40020000,0xac472c71,0x0e34b778,0x40050000,0x9b5796f8,0xc751ea8b,0x40070000,0x801a67fb,0x6a02feaf,0x40070000,0xd40251ff,0xf2526b5a,0x40070000,0xab4a8704,0x9f7639ce,0x40050000,0xd6f3532e,0x740b1b39,};static long Q[] = {/*0x3fff0000,0x80000000,0x00000000,*/0x40030000,0xbbd693d5,0xbf262f3a,0x40060000,0xc2712d7b,0x031a13c8,0x40080000,0xc2e1d933,0x1993449d,0x40090000,0xd3658301,0x574e5b65,0x40090000,0xfdd8c043,0x3bd2a65d,0x40090000,0x9eb21cf5,0xffea3b21,0x40070000,0xa1367e62,0xd708545c,};#endif/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), * where z = 2(x-1)/(x+1) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 6.16e-22 */#ifdef UNKstatic long double R[4] = { 1.9757429581415468984296E-3L,-7.1990767473014147232598E-1L, 1.0777257190312272158094E1L,-3.5717684488096787370998E1L,};static long double S[4] = {/* 1.00000000000000000000E0L,*/-2.6201045551331104417768E1L, 1.9361891836232102174846E2L,-4.2861221385716144629696E2L,};/* log2(e) - 1 */#define LOG2EA 4.4269504088896340735992e-1L#endif#ifdef IBMPCstatic short R[] = {0x6ef4,0xf922,0x7763,0x817b,0x3ff6, XPD0x15fd,0x1af9,0xde8f,0xb84b,0xbffe, XPD0x8b96,0x4f8d,0xa53c,0xac6f,0x4002, XPD0x8932,0xb4e3,0xe8ae,0x8ede,0xc004, XPD};static short S[] = {/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/0x7ce4,0x1fc9,0xbdc5,0xd19b,0xc003, XPD0x0af3,0x0d10,0x716f,0xc19e,0x4006, XPD0x4d7d,0x0f55,0x5d06,0xd64e,0xc007, XPD};static short LG2EA[] = {0xc2ef,0x705f,0xeca5,0xe2a8,0x3ffd, XPD};#define LOG2EA *(long double *)LG2EA#endif#ifdef MIEEEstatic long R[12] = {0x3ff60000,0x817b7763,0xf9226ef4,0xbffe0000,0xb84bde8f,0x1af915fd,0x40020000,0xac6fa53c,0x4f8d8b96,0xc0040000,0x8edee8ae,0xb4e38932,};static long S[9] = {/*0x3fff0000,0x80000000,0x00000000,*/0xc0030000,0xd19bbdc5,0x1fc97ce4,0x40060000,0xc19e716f,0x0d100af3,0xc0070000,0xd64e5d06,0x0f554d7d,};static long LG2EA[] = {0x3ffd0000,0xe2a8eca5,0x705fc2ef};#define LOG2EA *(long double *)LG2EA#endif#define SQRTH 0.70710678118654752440Lextern long double MINLOGL;#ifdef ANSIPROTextern long double frexpl ( long double, int * );extern long double ldexpl ( long double, int );extern long double polevll ( long double, void *, int );extern long double p1evll ( long double, void *, int );extern int isnanl ( long double );#elselong double frexpl(), ldexpl(), polevll(), p1evll();extern int isnanl ();#endif#ifdef INFINITIESextern long double INFINITYL;#endif#ifdef NANSextern long double NANL;#endiflong double log2l(x)long double x;{VOLATILE long double z;long double y;int e;#ifdef NANSif( isnanl(x) )	return(x);#endif#ifdef INFINITIESif( x == INFINITYL )	return(x);#endif/* Test for domain */if( x <= 0.0L )	{	if( x == 0.0L )		{#ifdef INFINITIES		return( -INFINITYL );#else		mtherr( "log2l", SING );		return( -16384.0L );#endif		}	else		{#ifdef NANS		return( NANL );#else		mtherr( "log2l", DOMAIN );		return( -16384.0L );#endif		}	}/* separate mantissa from exponent *//* Note, frexp is used so that denormal numbers * will be handled properly. */x = frexpl( x, &e );/* logarithm using log(x) = z + z**3 P(z)/Q(z), * where z = 2(x-1)/x+1) */if( (e > 2) || (e < -2) ){if( x < SQRTH )	{ /* 2( 2x-1 )/( 2x+1 ) */	e -= 1;	z = x - 0.5L;	y = 0.5L * z + 0.5L;	}	else	{ /*  2 (x-1)/(x+1)   */	z = x - 0.5L;	z -= 0.5L;	y = 0.5L * x  + 0.5L;	}x = z / y;z = x*x;y = x * ( z * polevll( z, R, 3 ) / p1evll( z, S, 3 ) );goto done;}/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */if( x < SQRTH )	{	e -= 1;	x = ldexpl( x, 1 ) - 1.0L; /*  2x - 1  */	}	else	{	x = x - 1.0L;	}z = x*x;y = x * ( z * polevll( x, P, 6 ) / p1evll( x, Q, 7 ) );y = y - ldexpl( z, -1 );   /* -0.5x^2 + ... */done:/* Multiply log of fraction by log2(e) * and base 2 exponent by 1 * * ***CAUTION*** * * This sequence of operations is critical and it may * be horribly defeated by some compiler optimizers. */z = y * LOG2EA;z += x * LOG2EA;z += y;z += x;z += e;return( z );}
 |