| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 | /*							unityl.c * * Relative error approximations for function arguments near * unity. * *    log1p(x) = log(1+x) *    expm1(x) = exp(x) - 1 *    cosm1(x) = cos(x) - 1 * *//* log1p(x) = log(1 + x) *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0.5, 2      30000       1.4e-19     4.1e-20 * */#include <math.h>/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 2.32e-20 */static long double LP[] = { 4.5270000862445199635215E-5L, 4.9854102823193375972212E-1L, 6.5787325942061044846969E0L, 2.9911919328553073277375E1L, 6.0949667980987787057556E1L, 5.7112963590585538103336E1L, 2.0039553499201281259648E1L,};static long double LQ[] = {/* 1.0000000000000000000000E0L,*/ 1.5062909083469192043167E1L, 8.3047565967967209469434E1L, 2.2176239823732856465394E2L, 3.0909872225312059774938E2L, 2.1642788614495947685003E2L, 6.0118660497603843919306E1L,};#define SQRTH 0.70710678118654752440L#define SQRT2 1.41421356237309504880L#ifdef ANSIPROTextern long double logl ( long double );extern long double expl ( long double );extern long double cosl ( long double );extern long double polevll ( long double, void *, int );extern long double p1evll ( long double,  void *, int );#elselong double logl(), expl(), cosl(), polevll(), p1evll();#endiflong double log1pl(x)long double x;{long double z;z = 1.0L + x;if( (z < SQRTH) || (z > SQRT2) )	return( logl(z) );z = x*x;z = -0.5L * z + x * ( z * polevll( x, LP, 6 ) / p1evll( x, LQ, 6 ) );return (x + z);}/* expm1(x) = exp(x) - 1  *//*  e^x =  1 + 2x P(x^2)/( Q(x^2) - P(x^2) ) * -0.5 <= x <= 0.5 */static long double EP[3] = { 1.2617719307481059087798E-4L, 3.0299440770744196129956E-2L, 9.9999999999999999991025E-1L,};static long double EQ[4] = { 3.0019850513866445504159E-6L, 2.5244834034968410419224E-3L, 2.2726554820815502876593E-1L, 2.0000000000000000000897E0L,};long double expm1l(x)long double x;{long double r, xx;if( (x < -0.5L) || (x > 0.5L) )	return( expl(x) - 1.0L );xx = x * x;r = x * polevll( xx, EP, 2 );r = r/( polevll( xx, EQ, 3 ) - r );return (r + r);}/* cosm1(x) = cos(x) - 1  */static long double coscof[7] = { 4.7377507964246204691685E-14L,-1.1470284843425359765671E-11L, 2.0876754287081521758361E-9L,-2.7557319214999787979814E-7L, 2.4801587301570552304991E-5L,-1.3888888888888872993737E-3L, 4.1666666666666666609054E-2L,};extern long double PIO4L;long double cosm1l(x)long double x;{long double xx;if( (x < -PIO4L) || (x > PIO4L) )	return( cosl(x) - 1.0L );xx = x * x;xx = -0.5L*xx + xx * xx * polevll( xx, coscof, 6 );return xx;}
 |