123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- /* igamil()
- *
- * Inverse of complemented imcomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * long double a, x, y, igamil();
- *
- * x = igamil( a, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * igamc( a, x ) = y.
- *
- * Starting with the approximate value
- *
- * 3
- * x = a t
- *
- * where
- *
- * t = 1 - d - ndtri(y) sqrt(d)
- *
- * and
- *
- * d = 1/9a,
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of igamc(a,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Tested for a ranging from 0.5 to 30 and x from 0 to 0.5.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,0.5 3400 8.8e-16 1.3e-16
- * IEEE 0,0.5 10000 1.1e-14 1.0e-15
- *
- */
- /*
- Cephes Math Library Release 2.3: March, 1995
- Copyright 1984, 1995 by Stephen L. Moshier
- */
- #include <math.h>
- extern long double MACHEPL, MAXNUML, MAXLOGL, MINLOGL;
- #ifdef ANSIPROT
- extern long double ndtril ( long double );
- extern long double expl ( long double );
- extern long double fabsl ( long double );
- extern long double logl ( long double );
- extern long double sqrtl ( long double );
- extern long double lgaml ( long double );
- extern long double igamcl ( long double, long double );
- #else
- long double ndtril(), expl(), fabsl(), logl(), sqrtl(), lgaml();
- long double igamcl();
- #endif
- long double igamil( a, y0 )
- long double a, y0;
- {
- long double x0, x1, x, yl, yh, y, d, lgm, dithresh;
- int i, dir;
- /* bound the solution */
- x0 = MAXNUML;
- yl = 0.0L;
- x1 = 0.0L;
- yh = 1.0L;
- dithresh = 4.0 * MACHEPL;
- /* approximation to inverse function */
- d = 1.0L/(9.0L*a);
- y = ( 1.0L - d - ndtril(y0) * sqrtl(d) );
- x = a * y * y * y;
- lgm = lgaml(a);
- for( i=0; i<10; i++ )
- {
- if( x > x0 || x < x1 )
- goto ihalve;
- y = igamcl(a,x);
- if( y < yl || y > yh )
- goto ihalve;
- if( y < y0 )
- {
- x0 = x;
- yl = y;
- }
- else
- {
- x1 = x;
- yh = y;
- }
- /* compute the derivative of the function at this point */
- d = (a - 1.0L) * logl(x0) - x0 - lgm;
- if( d < -MAXLOGL )
- goto ihalve;
- d = -expl(d);
- /* compute the step to the next approximation of x */
- d = (y - y0)/d;
- x = x - d;
- if( i < 3 )
- continue;
- if( fabsl(d/x) < dithresh )
- goto done;
- }
- /* Resort to interval halving if Newton iteration did not converge. */
- ihalve:
- d = 0.0625L;
- if( x0 == MAXNUML )
- {
- if( x <= 0.0L )
- x = 1.0L;
- while( x0 == MAXNUML )
- {
- x = (1.0L + d) * x;
- y = igamcl( a, x );
- if( y < y0 )
- {
- x0 = x;
- yl = y;
- break;
- }
- d = d + d;
- }
- }
- d = 0.5L;
- dir = 0;
- for( i=0; i<400; i++ )
- {
- x = x1 + d * (x0 - x1);
- y = igamcl( a, x );
- lgm = (x0 - x1)/(x1 + x0);
- if( fabsl(lgm) < dithresh )
- break;
- lgm = (y - y0)/y0;
- if( fabsl(lgm) < dithresh )
- break;
- if( x <= 0.0L )
- break;
- if( y > y0 )
- {
- x1 = x;
- yh = y;
- if( dir < 0 )
- {
- dir = 0;
- d = 0.5L;
- }
- else if( dir > 1 )
- d = 0.5L * d + 0.5L;
- else
- d = (y0 - yl)/(yh - yl);
- dir += 1;
- }
- else
- {
- x0 = x;
- yl = y;
- if( dir > 0 )
- {
- dir = 0;
- d = 0.5L;
- }
- else if( dir < -1 )
- d = 0.5L * d;
- else
- d = (y0 - yl)/(yh - yl);
- dir -= 1;
- }
- }
- if( x == 0.0L )
- mtherr( "igamil", UNDERFLOW );
- done:
- return( x );
- }
|