123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 |
- /* One way encryption based on SHA256 sum.
- Copyright (C) 2007, 2009 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
- #include <assert.h>
- #include <errno.h>
- #include <stdbool.h>
- #include <stdlib.h>
- #include <string.h>
- #include <sys/param.h>
- #include "sha256.h"
- #include "libcrypt.h"
- /* Define our magic string to mark salt for SHA256 "encryption"
- replacement. */
- static const char sha256_salt_prefix[] = "$5$";
- /* Prefix for optional rounds specification. */
- static const char sha256_rounds_prefix[] = "rounds=";
- /* Maximum salt string length. */
- #define SALT_LEN_MAX 16
- /* Default number of rounds if not explicitly specified. */
- #define ROUNDS_DEFAULT 5000
- /* Minimum number of rounds. */
- #define ROUNDS_MIN 1000
- /* Maximum number of rounds. */
- #define ROUNDS_MAX 999999999
- /* Table with characters for base64 transformation. */
- static const char b64t[64] =
- "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
- #define B64_FROM_24BIT(b2, b1, b0, steps) \
- { \
- int n = (steps); \
- unsigned int w = ((b2) << 16) | ((b1) << 8) | (b0); \
- while (n-- > 0 && buflen > 0) \
- { \
- *cp++ = b64t[w & 0x3f]; \
- --buflen; \
- w >>= 6; \
- } \
- }
- char *
- __sha256_crypt_r (const char *key,
- const char *salt,
- char *buffer,
- int buflen)
- {
- unsigned char alt_result[32]
- __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
- unsigned char temp_result[32]
- __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
- size_t salt_len;
- size_t key_len;
- size_t cnt;
- char *cp;
- char *copied_key = NULL;
- char *copied_salt = NULL;
- char *p_bytes;
- char *s_bytes;
- /* Default number of rounds. */
- size_t rounds = ROUNDS_DEFAULT;
- bool rounds_custom = false;
- /* Find beginning of salt string. The prefix should normally always
- be present. Just in case it is not. */
- if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
- /* Skip salt prefix. */
- salt += sizeof (sha256_salt_prefix) - 1;
- if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
- == 0)
- {
- const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
- char *endp;
- unsigned long int srounds = strtoul (num, &endp, 10);
- if (*endp == '$')
- {
- salt = endp + 1;
- rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
- rounds_custom = true;
- }
- }
- salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
- key_len = strlen (key);
- if ((uintptr_t)key % __alignof__ (uint32_t) != 0)
- {
- char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t));
- key = copied_key =
- memcpy (tmp + __alignof__ (uint32_t)
- - (uintptr_t)tmp % __alignof__ (uint32_t),
- key, key_len);
- assert ((uintptr_t)key % __alignof__ (uint32_t) == 0);
- }
- if ((uintptr_t)salt % __alignof__ (uint32_t) != 0)
- {
- char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
- salt = copied_salt =
- memcpy (tmp + __alignof__ (uint32_t)
- - (uintptr_t)tmp % __alignof__ (uint32_t),
- salt, salt_len);
- assert ((uintptr_t)salt % __alignof__ (uint32_t) == 0);
- }
- struct sha256_ctx ctx;
- struct sha256_ctx alt_ctx;
- /* Prepare for the real work. */
- __sha256_init_ctx (&ctx);
- /* Add the key string. */
- __sha256_process_bytes (key, key_len, &ctx);
- /* The last part is the salt string. This must be at most 16
- characters and it ends at the first `$' character. */
- __sha256_process_bytes (salt, salt_len, &ctx);
- /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
- final result will be added to the first context. */
- __sha256_init_ctx (&alt_ctx);
- /* Add key. */
- __sha256_process_bytes (key, key_len, &alt_ctx);
- /* Add salt. */
- __sha256_process_bytes (salt, salt_len, &alt_ctx);
- /* Add key again. */
- __sha256_process_bytes (key, key_len, &alt_ctx);
- /* Now get result of this (32 bytes) and add it to the other
- context. */
- __sha256_finish_ctx (&alt_ctx, alt_result);
- /* Add for any character in the key one byte of the alternate sum. */
- for (cnt = key_len; cnt > 32; cnt -= 32)
- __sha256_process_bytes (alt_result, 32, &ctx);
- __sha256_process_bytes (alt_result, cnt, &ctx);
- /* Take the binary representation of the length of the key and for every
- 1 add the alternate sum, for every 0 the key. */
- for (cnt = key_len; cnt > 0; cnt >>= 1)
- if ((cnt & 1) != 0)
- __sha256_process_bytes (alt_result, 32, &ctx);
- else
- __sha256_process_bytes (key, key_len, &ctx);
- /* Create intermediate result. */
- __sha256_finish_ctx (&ctx, alt_result);
- /* Start computation of P byte sequence. */
- __sha256_init_ctx (&alt_ctx);
- /* For every character in the password add the entire password. */
- for (cnt = 0; cnt < key_len; ++cnt)
- __sha256_process_bytes (key, key_len, &alt_ctx);
- /* Finish the digest. */
- __sha256_finish_ctx (&alt_ctx, temp_result);
- /* Create byte sequence P. */
- cp = p_bytes = alloca (key_len);
- for (cnt = key_len; cnt >= 32; cnt -= 32)
- cp = mempcpy (cp, temp_result, 32);
- memcpy (cp, temp_result, cnt);
- /* Start computation of S byte sequence. */
- __sha256_init_ctx (&alt_ctx);
- /* For every character in the password add the entire password. */
- for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
- __sha256_process_bytes (salt, salt_len, &alt_ctx);
- /* Finish the digest. */
- __sha256_finish_ctx (&alt_ctx, temp_result);
- /* Create byte sequence S. */
- cp = s_bytes = alloca (salt_len);
- for (cnt = salt_len; cnt >= 32; cnt -= 32)
- cp = mempcpy (cp, temp_result, 32);
- memcpy (cp, temp_result, cnt);
- /* Repeatedly run the collected hash value through SHA256 to burn
- CPU cycles. */
- for (cnt = 0; cnt < rounds; ++cnt)
- {
- /* New context. */
- __sha256_init_ctx (&ctx);
- /* Add key or last result. */
- if ((cnt & 1) != 0)
- __sha256_process_bytes (p_bytes, key_len, &ctx);
- else
- __sha256_process_bytes (alt_result, 32, &ctx);
- /* Add salt for numbers not divisible by 3. */
- if (cnt % 3 != 0)
- __sha256_process_bytes (s_bytes, salt_len, &ctx);
- /* Add key for numbers not divisible by 7. */
- if (cnt % 7 != 0)
- __sha256_process_bytes (p_bytes, key_len, &ctx);
- /* Add key or last result. */
- if ((cnt & 1) != 0)
- __sha256_process_bytes (alt_result, 32, &ctx);
- else
- __sha256_process_bytes (p_bytes, key_len, &ctx);
- /* Create intermediate result. */
- __sha256_finish_ctx (&ctx, alt_result);
- }
- /* Now we can construct the result string. It consists of three
- parts. */
- cp = stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
- buflen -= sizeof (sha256_salt_prefix) - 1;
- if (rounds_custom)
- {
- int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
- sha256_rounds_prefix, rounds);
- cp += n;
- buflen -= n;
- }
- cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
- buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
- if (buflen > 0)
- {
- *cp++ = '$';
- --buflen;
- }
- B64_FROM_24BIT (alt_result[0], alt_result[10], alt_result[20], 4);
- B64_FROM_24BIT (alt_result[21], alt_result[1], alt_result[11], 4);
- B64_FROM_24BIT (alt_result[12], alt_result[22], alt_result[2], 4);
- B64_FROM_24BIT (alt_result[3], alt_result[13], alt_result[23], 4);
- B64_FROM_24BIT (alt_result[24], alt_result[4], alt_result[14], 4);
- B64_FROM_24BIT (alt_result[15], alt_result[25], alt_result[5], 4);
- B64_FROM_24BIT (alt_result[6], alt_result[16], alt_result[26], 4);
- B64_FROM_24BIT (alt_result[27], alt_result[7], alt_result[17], 4);
- B64_FROM_24BIT (alt_result[18], alt_result[28], alt_result[8], 4);
- B64_FROM_24BIT (alt_result[9], alt_result[19], alt_result[29], 4);
- B64_FROM_24BIT (0, alt_result[31], alt_result[30], 3);
- if (buflen <= 0)
- {
- __set_errno (ERANGE);
- buffer = NULL;
- }
- else
- *cp = '\0'; /* Terminate the string. */
- /* Clear the buffer for the intermediate result so that people
- attaching to processes or reading core dumps cannot get any
- information. We do it in this way to clear correct_words[]
- inside the SHA256 implementation as well. */
- __sha256_init_ctx (&ctx);
- __sha256_finish_ctx (&ctx, alt_result);
- memset (&ctx, '\0', sizeof (ctx));
- memset (&alt_ctx, '\0', sizeof (alt_ctx));
- memset (temp_result, '\0', sizeof (temp_result));
- memset (p_bytes, '\0', key_len);
- memset (s_bytes, '\0', salt_len);
- if (copied_key != NULL)
- memset (copied_key, '\0', key_len);
- if (copied_salt != NULL)
- memset (copied_salt, '\0', salt_len);
- return buffer;
- }
- static char *buffer;
- /* This entry point is equivalent to the `crypt' function in Unix
- libcs. */
- char *
- __sha256_crypt (const unsigned char *key, const unsigned char *salt)
- {
- /* We don't want to have an arbitrary limit in the size of the
- password. We can compute an upper bound for the size of the
- result in advance and so we can prepare the buffer we pass to
- `sha256_crypt_r'. */
- static int buflen;
- int needed = (sizeof (sha256_salt_prefix) - 1
- + sizeof (sha256_rounds_prefix) + 9 + 1
- + strlen (salt) + 1 + 43 + 1);
- if (buflen < needed)
- {
- char *new_buffer = (char *) realloc (buffer, needed);
- if (new_buffer == NULL)
- return NULL;
- buffer = new_buffer;
- buflen = needed;
- }
- return __sha256_crypt_r ((const char *) key, (const char *) salt, buffer, buflen);
- }
|