123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- /* incbil()
- *
- * Inverse of imcomplete beta integral
- *
- *
- *
- * SYNOPSIS:
- *
- * long double a, b, x, y, incbil();
- *
- * x = incbil( a, b, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * incbet( a, b, x ) = y.
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of incbet(a,b,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * x a,b
- * arithmetic domain domain # trials peak rms
- * IEEE 0,1 .5,10000 10000 1.1e-14 1.4e-16
- */
- /*
- Cephes Math Library Release 2.3: March, 1995
- Copyright 1984, 1995 by Stephen L. Moshier
- */
- #include <math.h>
- extern long double MACHEPL, MAXNUML, MAXLOGL, MINLOGL;
- #ifdef ANSIPROT
- extern long double incbetl ( long double, long double, long double );
- extern long double expl ( long double );
- extern long double fabsl ( long double );
- extern long double logl ( long double );
- extern long double sqrtl ( long double );
- extern long double lgaml ( long double );
- extern long double ndtril ( long double );
- #else
- long double incbetl(), expl(), fabsl(), logl(), sqrtl(), lgaml();
- long double ndtril();
- #endif
- long double incbil( aa, bb, yy0 )
- long double aa, bb, yy0;
- {
- long double a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt;
- int i, rflg, dir, nflg;
- if( yy0 <= 0.0L )
- return(0.0L);
- if( yy0 >= 1.0L )
- return(1.0L);
- x0 = 0.0L;
- yl = 0.0L;
- x1 = 1.0L;
- yh = 1.0L;
- if( aa <= 1.0L || bb <= 1.0L )
- {
- dithresh = 1.0e-7L;
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- x = a/(a+b);
- y = incbetl( a, b, x );
- nflg = 0;
- goto ihalve;
- }
- else
- {
- nflg = 0;
- dithresh = 1.0e-4L;
- }
- /* approximation to inverse function */
- yp = -ndtril( yy0 );
- if( yy0 > 0.5L )
- {
- rflg = 1;
- a = bb;
- b = aa;
- y0 = 1.0L - yy0;
- yp = -yp;
- }
- else
- {
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- }
- lgm = (yp * yp - 3.0L)/6.0L;
- x = 2.0L/( 1.0L/(2.0L * a-1.0L) + 1.0L/(2.0L * b - 1.0L) );
- d = yp * sqrtl( x + lgm ) / x
- - ( 1.0L/(2.0L * b - 1.0L) - 1.0L/(2.0L * a - 1.0L) )
- * (lgm + (5.0L/6.0L) - 2.0L/(3.0L * x));
- d = 2.0L * d;
- if( d < MINLOGL )
- {
- x = 1.0L;
- goto under;
- }
- x = a/( a + b * expl(d) );
- y = incbetl( a, b, x );
- yp = (y - y0)/y0;
- if( fabsl(yp) < 0.2 )
- goto newt;
- /* Resort to interval halving if not close enough. */
- ihalve:
- dir = 0;
- di = 0.5L;
- for( i=0; i<400; i++ )
- {
- if( i != 0 )
- {
- x = x0 + di * (x1 - x0);
- if( x == 1.0L )
- x = 1.0L - MACHEPL;
- if( x == 0.0L )
- {
- di = 0.5;
- x = x0 + di * (x1 - x0);
- if( x == 0.0 )
- goto under;
- }
- y = incbetl( a, b, x );
- yp = (x1 - x0)/(x1 + x0);
- if( fabsl(yp) < dithresh )
- goto newt;
- yp = (y-y0)/y0;
- if( fabsl(yp) < dithresh )
- goto newt;
- }
- if( y < y0 )
- {
- x0 = x;
- yl = y;
- if( dir < 0 )
- {
- dir = 0;
- di = 0.5L;
- }
- else if( dir > 3 )
- di = 1.0L - (1.0L - di) * (1.0L - di);
- else if( dir > 1 )
- di = 0.5L * di + 0.5L;
- else
- di = (y0 - y)/(yh - yl);
- dir += 1;
- if( x0 > 0.95L )
- {
- if( rflg == 1 )
- {
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- }
- else
- {
- rflg = 1;
- a = bb;
- b = aa;
- y0 = 1.0 - yy0;
- }
- x = 1.0L - x;
- y = incbetl( a, b, x );
- x0 = 0.0;
- yl = 0.0;
- x1 = 1.0;
- yh = 1.0;
- goto ihalve;
- }
- }
- else
- {
- x1 = x;
- if( rflg == 1 && x1 < MACHEPL )
- {
- x = 0.0L;
- goto done;
- }
- yh = y;
- if( dir > 0 )
- {
- dir = 0;
- di = 0.5L;
- }
- else if( dir < -3 )
- di = di * di;
- else if( dir < -1 )
- di = 0.5L * di;
- else
- di = (y - y0)/(yh - yl);
- dir -= 1;
- }
- }
- mtherr( "incbil", PLOSS );
- if( x0 >= 1.0L )
- {
- x = 1.0L - MACHEPL;
- goto done;
- }
- if( x <= 0.0L )
- {
- under:
- mtherr( "incbil", UNDERFLOW );
- x = 0.0L;
- goto done;
- }
- newt:
- if( nflg )
- goto done;
- nflg = 1;
- lgm = lgaml(a+b) - lgaml(a) - lgaml(b);
- for( i=0; i<15; i++ )
- {
- /* Compute the function at this point. */
- if( i != 0 )
- y = incbetl(a,b,x);
- if( y < yl )
- {
- x = x0;
- y = yl;
- }
- else if( y > yh )
- {
- x = x1;
- y = yh;
- }
- else if( y < y0 )
- {
- x0 = x;
- yl = y;
- }
- else
- {
- x1 = x;
- yh = y;
- }
- if( x == 1.0L || x == 0.0L )
- break;
- /* Compute the derivative of the function at this point. */
- d = (a - 1.0L) * logl(x) + (b - 1.0L) * logl(1.0L - x) + lgm;
- if( d < MINLOGL )
- goto done;
- if( d > MAXLOGL )
- break;
- d = expl(d);
- /* Compute the step to the next approximation of x. */
- d = (y - y0)/d;
- xt = x - d;
- if( xt <= x0 )
- {
- y = (x - x0) / (x1 - x0);
- xt = x0 + 0.5L * y * (x - x0);
- if( xt <= 0.0L )
- break;
- }
- if( xt >= x1 )
- {
- y = (x1 - x) / (x1 - x0);
- xt = x1 - 0.5L * y * (x1 - x);
- if( xt >= 1.0L )
- break;
- }
- x = xt;
- if( fabsl(d/x) < (128.0L * MACHEPL) )
- goto done;
- }
- /* Did not converge. */
- dithresh = 256.0L * MACHEPL;
- goto ihalve;
- done:
- if( rflg )
- {
- if( x <= MACHEPL )
- x = 1.0L - MACHEPL;
- else
- x = 1.0L - x;
- }
- return( x );
- }
|