memcmp.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. /* Copyright (C) 1991,1993,1995,1997,1998,2003,2004
  2. Free Software Foundation, Inc.
  3. This file is part of the GNU C Library.
  4. Contributed by Torbjorn Granlund (tege@sics.se).
  5. The GNU C Library is free software; you can redistribute it and/or
  6. modify it under the terms of the GNU Lesser General Public
  7. License as published by the Free Software Foundation; either
  8. version 2.1 of the License, or (at your option) any later version.
  9. The GNU C Library is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. Lesser General Public License for more details.
  13. You should have received a copy of the GNU Lesser General Public
  14. License along with the GNU C Library; if not, write to the Free
  15. Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  16. 02111-1307 USA. */
  17. #include <string.h>
  18. #include "memcopy.h"
  19. #include <endian.h>
  20. #if __BYTE_ORDER == __BIG_ENDIAN
  21. # define CMP_LT_OR_GT(a, b) ((a) > (b) ? 1 : -1)
  22. #else
  23. # define CMP_LT_OR_GT(a, b) memcmp_bytes ((a), (b))
  24. #endif
  25. /* BE VERY CAREFUL IF YOU CHANGE THIS CODE! */
  26. /* The strategy of this memcmp is:
  27. 1. Compare bytes until one of the block pointers is aligned.
  28. 2. Compare using memcmp_common_alignment or
  29. memcmp_not_common_alignment, regarding the alignment of the other
  30. block after the initial byte operations. The maximum number of
  31. full words (of type op_t) are compared in this way.
  32. 3. Compare the few remaining bytes. */
  33. #if __BYTE_ORDER != __BIG_ENDIAN
  34. /* memcmp_bytes -- Compare A and B bytewise in the byte order of the machine.
  35. A and B are known to be different.
  36. This is needed only on little-endian machines. */
  37. static __inline__ int
  38. memcmp_bytes (op_t a, op_t b)
  39. {
  40. long int srcp1 = (long int) &a;
  41. long int srcp2 = (long int) &b;
  42. op_t a0, b0;
  43. do
  44. {
  45. a0 = ((byte *) srcp1)[0];
  46. b0 = ((byte *) srcp2)[0];
  47. srcp1 += 1;
  48. srcp2 += 1;
  49. }
  50. while (a0 == b0);
  51. return a0 - b0;
  52. }
  53. #endif
  54. /* memcmp_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN `op_t'
  55. objects (not LEN bytes!). Both SRCP1 and SRCP2 should be aligned for
  56. memory operations on `op_t's. */
  57. static int
  58. memcmp_common_alignment (long int srcp1, long int srcp2, size_t len)
  59. {
  60. op_t a0, a1;
  61. op_t b0, b1;
  62. switch (len % 4)
  63. {
  64. default: /* Avoid warning about uninitialized local variables. */
  65. case 2:
  66. a0 = ((op_t *) srcp1)[0];
  67. b0 = ((op_t *) srcp2)[0];
  68. srcp1 -= 2 * OPSIZ;
  69. srcp2 -= 2 * OPSIZ;
  70. len += 2;
  71. goto do1;
  72. case 3:
  73. a1 = ((op_t *) srcp1)[0];
  74. b1 = ((op_t *) srcp2)[0];
  75. srcp1 -= OPSIZ;
  76. srcp2 -= OPSIZ;
  77. len += 1;
  78. goto do2;
  79. case 0:
  80. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  81. return 0;
  82. a0 = ((op_t *) srcp1)[0];
  83. b0 = ((op_t *) srcp2)[0];
  84. goto do3;
  85. case 1:
  86. a1 = ((op_t *) srcp1)[0];
  87. b1 = ((op_t *) srcp2)[0];
  88. srcp1 += OPSIZ;
  89. srcp2 += OPSIZ;
  90. len -= 1;
  91. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  92. goto do0;
  93. /* Fall through. */
  94. }
  95. do
  96. {
  97. a0 = ((op_t *) srcp1)[0];
  98. b0 = ((op_t *) srcp2)[0];
  99. if (a1 != b1)
  100. return CMP_LT_OR_GT (a1, b1);
  101. do3:
  102. a1 = ((op_t *) srcp1)[1];
  103. b1 = ((op_t *) srcp2)[1];
  104. if (a0 != b0)
  105. return CMP_LT_OR_GT (a0, b0);
  106. do2:
  107. a0 = ((op_t *) srcp1)[2];
  108. b0 = ((op_t *) srcp2)[2];
  109. if (a1 != b1)
  110. return CMP_LT_OR_GT (a1, b1);
  111. do1:
  112. a1 = ((op_t *) srcp1)[3];
  113. b1 = ((op_t *) srcp2)[3];
  114. if (a0 != b0)
  115. return CMP_LT_OR_GT (a0, b0);
  116. srcp1 += 4 * OPSIZ;
  117. srcp2 += 4 * OPSIZ;
  118. len -= 4;
  119. }
  120. while (len != 0);
  121. /* This is the right position for do0. Please don't move
  122. it into the loop. */
  123. do0:
  124. if (a1 != b1)
  125. return CMP_LT_OR_GT (a1, b1);
  126. return 0;
  127. }
  128. /* memcmp_not_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN
  129. `op_t' objects (not LEN bytes!). SRCP2 should be aligned for memory
  130. operations on `op_t', but SRCP1 *should be unaligned*. */
  131. static int
  132. memcmp_not_common_alignment (long int srcp1, long int srcp2, size_t len)
  133. {
  134. op_t a0, a1, a2, a3;
  135. op_t b0, b1, b2, b3;
  136. op_t x;
  137. int shl, shr;
  138. /* Calculate how to shift a word read at the memory operation
  139. aligned srcp1 to make it aligned for comparison. */
  140. shl = 8 * (srcp1 % OPSIZ);
  141. shr = 8 * OPSIZ - shl;
  142. /* Make SRCP1 aligned by rounding it down to the beginning of the `op_t'
  143. it points in the middle of. */
  144. srcp1 &= -OPSIZ;
  145. switch (len % 4)
  146. {
  147. default: /* Avoid warning about uninitialized local variables. */
  148. case 2:
  149. a1 = ((op_t *) srcp1)[0];
  150. a2 = ((op_t *) srcp1)[1];
  151. b2 = ((op_t *) srcp2)[0];
  152. srcp1 -= 1 * OPSIZ;
  153. srcp2 -= 2 * OPSIZ;
  154. len += 2;
  155. goto do1;
  156. case 3:
  157. a0 = ((op_t *) srcp1)[0];
  158. a1 = ((op_t *) srcp1)[1];
  159. b1 = ((op_t *) srcp2)[0];
  160. srcp2 -= 1 * OPSIZ;
  161. len += 1;
  162. goto do2;
  163. case 0:
  164. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  165. return 0;
  166. a3 = ((op_t *) srcp1)[0];
  167. a0 = ((op_t *) srcp1)[1];
  168. b0 = ((op_t *) srcp2)[0];
  169. srcp1 += 1 * OPSIZ;
  170. goto do3;
  171. case 1:
  172. a2 = ((op_t *) srcp1)[0];
  173. a3 = ((op_t *) srcp1)[1];
  174. b3 = ((op_t *) srcp2)[0];
  175. srcp1 += 2 * OPSIZ;
  176. srcp2 += 1 * OPSIZ;
  177. len -= 1;
  178. if (OP_T_THRES <= 3 * OPSIZ && len == 0)
  179. goto do0;
  180. /* Fall through. */
  181. }
  182. do
  183. {
  184. a0 = ((op_t *) srcp1)[0];
  185. b0 = ((op_t *) srcp2)[0];
  186. x = MERGE(a2, shl, a3, shr);
  187. if (x != b3)
  188. return CMP_LT_OR_GT (x, b3);
  189. do3:
  190. a1 = ((op_t *) srcp1)[1];
  191. b1 = ((op_t *) srcp2)[1];
  192. x = MERGE(a3, shl, a0, shr);
  193. if (x != b0)
  194. return CMP_LT_OR_GT (x, b0);
  195. do2:
  196. a2 = ((op_t *) srcp1)[2];
  197. b2 = ((op_t *) srcp2)[2];
  198. x = MERGE(a0, shl, a1, shr);
  199. if (x != b1)
  200. return CMP_LT_OR_GT (x, b1);
  201. do1:
  202. a3 = ((op_t *) srcp1)[3];
  203. b3 = ((op_t *) srcp2)[3];
  204. x = MERGE(a1, shl, a2, shr);
  205. if (x != b2)
  206. return CMP_LT_OR_GT (x, b2);
  207. srcp1 += 4 * OPSIZ;
  208. srcp2 += 4 * OPSIZ;
  209. len -= 4;
  210. }
  211. while (len != 0);
  212. /* This is the right position for do0. Please don't move
  213. it into the loop. */
  214. do0:
  215. x = MERGE(a2, shl, a3, shr);
  216. if (x != b3)
  217. return CMP_LT_OR_GT (x, b3);
  218. return 0;
  219. }
  220. int
  221. memcmp (const __ptr_t s1, const __ptr_t s2, size_t len)
  222. {
  223. op_t a0;
  224. op_t b0;
  225. long int srcp1 = (long int) s1;
  226. long int srcp2 = (long int) s2;
  227. op_t res;
  228. if (len >= OP_T_THRES)
  229. {
  230. /* There are at least some bytes to compare. No need to test
  231. for LEN == 0 in this alignment loop. */
  232. while (srcp2 % OPSIZ != 0)
  233. {
  234. a0 = ((byte *) srcp1)[0];
  235. b0 = ((byte *) srcp2)[0];
  236. srcp1 += 1;
  237. srcp2 += 1;
  238. res = a0 - b0;
  239. if (res != 0)
  240. return res;
  241. len -= 1;
  242. }
  243. /* SRCP2 is now aligned for memory operations on `op_t'.
  244. SRCP1 alignment determines if we can do a simple,
  245. aligned compare or need to shuffle bits. */
  246. if (srcp1 % OPSIZ == 0)
  247. res = memcmp_common_alignment (srcp1, srcp2, len / OPSIZ);
  248. else
  249. res = memcmp_not_common_alignment (srcp1, srcp2, len / OPSIZ);
  250. if (res != 0)
  251. return res;
  252. /* Number of bytes remaining in the interval [0..OPSIZ-1]. */
  253. srcp1 += len & -OPSIZ;
  254. srcp2 += len & -OPSIZ;
  255. len %= OPSIZ;
  256. }
  257. /* There are just a few bytes to compare. Use byte memory operations. */
  258. while (len != 0)
  259. {
  260. a0 = ((byte *) srcp1)[0];
  261. b0 = ((byte *) srcp2)[0];
  262. srcp1 += 1;
  263. srcp2 += 1;
  264. res = a0 - b0;
  265. if (res != 0)
  266. return res;
  267. len -= 1;
  268. }
  269. return 0;
  270. }
  271. libc_hidden_weak(memcmp)
  272. #ifdef __UCLIBC_SUSV3_LEGACY__
  273. strong_alias(memcmp,bcmp)
  274. #endif