e_hypot.c 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. /* @(#)e_hypot.c 5.1 93/09/24 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #if defined(LIBM_SCCS) && !defined(lint)
  13. static char rcsid[] = "$NetBSD: e_hypot.c,v 1.9 1995/05/12 04:57:27 jtc Exp $";
  14. #endif
  15. /* __ieee754_hypot(x,y)
  16. *
  17. * Method :
  18. * If (assume round-to-nearest) z=x*x+y*y
  19. * has error less than sqrt(2)/2 ulp, than
  20. * sqrt(z) has error less than 1 ulp (exercise).
  21. *
  22. * So, compute sqrt(x*x+y*y) with some care as
  23. * follows to get the error below 1 ulp:
  24. *
  25. * Assume x>y>0;
  26. * (if possible, set rounding to round-to-nearest)
  27. * 1. if x > 2y use
  28. * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
  29. * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
  30. * 2. if x <= 2y use
  31. * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
  32. * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
  33. * y1= y with lower 32 bits chopped, y2 = y-y1.
  34. *
  35. * NOTE: scaling may be necessary if some argument is too
  36. * large or too tiny
  37. *
  38. * Special cases:
  39. * hypot(x,y) is INF if x or y is +INF or -INF; else
  40. * hypot(x,y) is NAN if x or y is NAN.
  41. *
  42. * Accuracy:
  43. * hypot(x,y) returns sqrt(x^2+y^2) with error less
  44. * than 1 ulps (units in the last place)
  45. */
  46. #include "math.h"
  47. #include "math_private.h"
  48. #ifdef __STDC__
  49. double attribute_hidden __ieee754_hypot(double x, double y)
  50. #else
  51. double attribute_hidden __ieee754_hypot(x,y)
  52. double x, y;
  53. #endif
  54. {
  55. double a=x,b=y,t1,t2,y1,y2,w;
  56. int32_t j,k,ha,hb;
  57. GET_HIGH_WORD(ha,x);
  58. ha &= 0x7fffffff;
  59. GET_HIGH_WORD(hb,y);
  60. hb &= 0x7fffffff;
  61. if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
  62. SET_HIGH_WORD(a,ha); /* a <- |a| */
  63. SET_HIGH_WORD(b,hb); /* b <- |b| */
  64. if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
  65. k=0;
  66. if(ha > 0x5f300000) { /* a>2**500 */
  67. if(ha >= 0x7ff00000) { /* Inf or NaN */
  68. u_int32_t low;
  69. w = a+b; /* for sNaN */
  70. GET_LOW_WORD(low,a);
  71. if(((ha&0xfffff)|low)==0) w = a;
  72. GET_LOW_WORD(low,b);
  73. if(((hb^0x7ff00000)|low)==0) w = b;
  74. return w;
  75. }
  76. /* scale a and b by 2**-600 */
  77. ha -= 0x25800000; hb -= 0x25800000; k += 600;
  78. SET_HIGH_WORD(a,ha);
  79. SET_HIGH_WORD(b,hb);
  80. }
  81. if(hb < 0x20b00000) { /* b < 2**-500 */
  82. if(hb <= 0x000fffff) { /* subnormal b or 0 */
  83. u_int32_t low;
  84. GET_LOW_WORD(low,b);
  85. if((hb|low)==0) return a;
  86. t1=0;
  87. SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
  88. b *= t1;
  89. a *= t1;
  90. k -= 1022;
  91. } else { /* scale a and b by 2^600 */
  92. ha += 0x25800000; /* a *= 2^600 */
  93. hb += 0x25800000; /* b *= 2^600 */
  94. k -= 600;
  95. SET_HIGH_WORD(a,ha);
  96. SET_HIGH_WORD(b,hb);
  97. }
  98. }
  99. /* medium size a and b */
  100. w = a-b;
  101. if (w>b) {
  102. t1 = 0;
  103. SET_HIGH_WORD(t1,ha);
  104. t2 = a-t1;
  105. w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
  106. } else {
  107. a = a+a;
  108. y1 = 0;
  109. SET_HIGH_WORD(y1,hb);
  110. y2 = b - y1;
  111. t1 = 0;
  112. SET_HIGH_WORD(t1,ha+0x00100000);
  113. t2 = a - t1;
  114. w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
  115. }
  116. if(k!=0) {
  117. u_int32_t high;
  118. t1 = 1.0;
  119. GET_HIGH_WORD(high,t1);
  120. SET_HIGH_WORD(t1,high+(k<<20));
  121. return t1*w;
  122. } else return w;
  123. }