queue.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. /*
  2. * Copyright (c) 1991, 1993
  3. * The Regents of the University of California. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. * 3. Neither the name of the University nor the names of its contributors
  14. * may be used to endorse or promote products derived from this software
  15. * without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  18. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  21. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  22. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  23. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  24. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  25. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  26. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  27. * SUCH DAMAGE.
  28. *
  29. * @(#)queue.h 8.5 (Berkeley) 8/20/94
  30. */
  31. #ifndef _SYS_QUEUE_H_
  32. #define _SYS_QUEUE_H_
  33. /*
  34. * This file defines five types of data structures: singly-linked lists,
  35. * lists, simple queues, tail queues, and circular queues.
  36. *
  37. * A singly-linked list is headed by a single forward pointer. The
  38. * elements are singly linked for minimum space and pointer manipulation
  39. * overhead at the expense of O(n) removal for arbitrary elements. New
  40. * elements can be added to the list after an existing element or at the
  41. * head of the list. Elements being removed from the head of the list
  42. * should use the explicit macro for this purpose for optimum
  43. * efficiency. A singly-linked list may only be traversed in the forward
  44. * direction. Singly-linked lists are ideal for applications with large
  45. * datasets and few or no removals or for implementing a LIFO queue.
  46. *
  47. * A list is headed by a single forward pointer (or an array of forward
  48. * pointers for a hash table header). The elements are doubly linked
  49. * so that an arbitrary element can be removed without a need to
  50. * traverse the list. New elements can be added to the list before
  51. * or after an existing element or at the head of the list. A list
  52. * may only be traversed in the forward direction.
  53. *
  54. * A simple queue is headed by a pair of pointers, one the head of the
  55. * list and the other to the tail of the list. The elements are singly
  56. * linked to save space, so elements can only be removed from the
  57. * head of the list. New elements can be added to the list after
  58. * an existing element, at the head of the list, or at the end of the
  59. * list. A simple queue may only be traversed in the forward direction.
  60. *
  61. * A tail queue is headed by a pair of pointers, one to the head of the
  62. * list and the other to the tail of the list. The elements are doubly
  63. * linked so that an arbitrary element can be removed without a need to
  64. * traverse the list. New elements can be added to the list before or
  65. * after an existing element, at the head of the list, or at the end of
  66. * the list. A tail queue may be traversed in either direction.
  67. *
  68. * A circle queue is headed by a pair of pointers, one to the head of the
  69. * list and the other to the tail of the list. The elements are doubly
  70. * linked so that an arbitrary element can be removed without a need to
  71. * traverse the list. New elements can be added to the list before or after
  72. * an existing element, at the head of the list, or at the end of the list.
  73. * A circle queue may be traversed in either direction, but has a more
  74. * complex end of list detection.
  75. *
  76. * For details on the use of these macros, see the queue(3) manual page.
  77. */
  78. /*
  79. * List definitions.
  80. */
  81. #define LIST_HEAD(name, type) \
  82. struct name { \
  83. struct type *lh_first; /* first element */ \
  84. }
  85. #define LIST_HEAD_INITIALIZER(head) \
  86. { NULL }
  87. #define LIST_ENTRY(type) \
  88. struct { \
  89. struct type *le_next; /* next element */ \
  90. struct type **le_prev; /* address of previous next element */ \
  91. }
  92. /*
  93. * List functions.
  94. */
  95. #define LIST_INIT(head) do { \
  96. (head)->lh_first = NULL; \
  97. } while (/*CONSTCOND*/0)
  98. #define LIST_INSERT_AFTER(listelm, elm, field) do { \
  99. QUEUEDEBUG_LIST_OP((listelm), field) \
  100. if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
  101. (listelm)->field.le_next->field.le_prev = \
  102. &(elm)->field.le_next; \
  103. (listelm)->field.le_next = (elm); \
  104. (elm)->field.le_prev = &(listelm)->field.le_next; \
  105. } while (/*CONSTCOND*/0)
  106. #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
  107. QUEUEDEBUG_LIST_OP((listelm), field) \
  108. (elm)->field.le_prev = (listelm)->field.le_prev; \
  109. (elm)->field.le_next = (listelm); \
  110. *(listelm)->field.le_prev = (elm); \
  111. (listelm)->field.le_prev = &(elm)->field.le_next; \
  112. } while (/*CONSTCOND*/0)
  113. #define LIST_INSERT_HEAD(head, elm, field) do { \
  114. QUEUEDEBUG_LIST_INSERT_HEAD((head), (elm), field) \
  115. if (((elm)->field.le_next = (head)->lh_first) != NULL) \
  116. (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  117. (head)->lh_first = (elm); \
  118. (elm)->field.le_prev = &(head)->lh_first; \
  119. } while (/*CONSTCOND*/0)
  120. #define LIST_REMOVE(elm, field) do { \
  121. QUEUEDEBUG_LIST_OP((elm), field) \
  122. if ((elm)->field.le_next != NULL) \
  123. (elm)->field.le_next->field.le_prev = \
  124. (elm)->field.le_prev; \
  125. *(elm)->field.le_prev = (elm)->field.le_next; \
  126. QUEUEDEBUG_LIST_POSTREMOVE((elm), field) \
  127. } while (/*CONSTCOND*/0)
  128. #define LIST_FOREACH(var, head, field) \
  129. for ((var) = ((head)->lh_first); \
  130. (var); \
  131. (var) = ((var)->field.le_next))
  132. /*
  133. * List access methods.
  134. */
  135. #define LIST_EMPTY(head) ((head)->lh_first == NULL)
  136. #define LIST_FIRST(head) ((head)->lh_first)
  137. #define LIST_NEXT(elm, field) ((elm)->field.le_next)
  138. /*
  139. * Singly-linked List definitions.
  140. */
  141. #define SLIST_HEAD(name, type) \
  142. struct name { \
  143. struct type *slh_first; /* first element */ \
  144. }
  145. #define SLIST_HEAD_INITIALIZER(head) \
  146. { NULL }
  147. #define SLIST_ENTRY(type) \
  148. struct { \
  149. struct type *sle_next; /* next element */ \
  150. }
  151. /*
  152. * Singly-linked List functions.
  153. */
  154. #define SLIST_INIT(head) do { \
  155. (head)->slh_first = NULL; \
  156. } while (/*CONSTCOND*/0)
  157. #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
  158. (elm)->field.sle_next = (slistelm)->field.sle_next; \
  159. (slistelm)->field.sle_next = (elm); \
  160. } while (/*CONSTCOND*/0)
  161. #define SLIST_INSERT_HEAD(head, elm, field) do { \
  162. (elm)->field.sle_next = (head)->slh_first; \
  163. (head)->slh_first = (elm); \
  164. } while (/*CONSTCOND*/0)
  165. #define SLIST_REMOVE_HEAD(head, field) do { \
  166. (head)->slh_first = (head)->slh_first->field.sle_next; \
  167. } while (/*CONSTCOND*/0)
  168. #define SLIST_REMOVE(head, elm, type, field) do { \
  169. if ((head)->slh_first == (elm)) { \
  170. SLIST_REMOVE_HEAD((head), field); \
  171. } \
  172. else { \
  173. struct type *curelm = (head)->slh_first; \
  174. while(curelm->field.sle_next != (elm)) \
  175. curelm = curelm->field.sle_next; \
  176. curelm->field.sle_next = \
  177. curelm->field.sle_next->field.sle_next; \
  178. } \
  179. } while (/*CONSTCOND*/0)
  180. #define SLIST_FOREACH(var, head, field) \
  181. for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
  182. /*
  183. * Singly-linked List access methods.
  184. */
  185. #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
  186. #define SLIST_FIRST(head) ((head)->slh_first)
  187. #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
  188. /*
  189. * Singly-linked Tail queue declarations.
  190. */
  191. #define STAILQ_HEAD(name, type) \
  192. struct name { \
  193. struct type *stqh_first; /* first element */ \
  194. struct type **stqh_last; /* addr of last next element */ \
  195. }
  196. #define STAILQ_HEAD_INITIALIZER(head) \
  197. { NULL, &(head).stqh_first }
  198. #define STAILQ_ENTRY(type) \
  199. struct { \
  200. struct type *stqe_next; /* next element */ \
  201. }
  202. /*
  203. * Singly-linked Tail queue functions.
  204. */
  205. #define STAILQ_INIT(head) do { \
  206. (head)->stqh_first = NULL; \
  207. (head)->stqh_last = &(head)->stqh_first; \
  208. } while (/*CONSTCOND*/0)
  209. #define STAILQ_INSERT_HEAD(head, elm, field) do { \
  210. if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
  211. (head)->stqh_last = &(elm)->field.stqe_next; \
  212. (head)->stqh_first = (elm); \
  213. } while (/*CONSTCOND*/0)
  214. #define STAILQ_INSERT_TAIL(head, elm, field) do { \
  215. (elm)->field.stqe_next = NULL; \
  216. *(head)->stqh_last = (elm); \
  217. (head)->stqh_last = &(elm)->field.stqe_next; \
  218. } while (/*CONSTCOND*/0)
  219. #define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
  220. if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
  221. (head)->stqh_last = &(elm)->field.stqe_next; \
  222. (listelm)->field.stqe_next = (elm); \
  223. } while (/*CONSTCOND*/0)
  224. #define STAILQ_REMOVE_HEAD(head, field) do { \
  225. if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
  226. (head)->stqh_last = &(head)->stqh_first; \
  227. } while (/*CONSTCOND*/0)
  228. #define STAILQ_REMOVE(head, elm, type, field) do { \
  229. if ((head)->stqh_first == (elm)) { \
  230. STAILQ_REMOVE_HEAD((head), field); \
  231. } else { \
  232. struct type *curelm = (head)->stqh_first; \
  233. while (curelm->field.stqe_next != (elm)) \
  234. curelm = curelm->field.stqe_next; \
  235. if ((curelm->field.stqe_next = \
  236. curelm->field.stqe_next->field.stqe_next) == NULL) \
  237. (head)->stqh_last = &(curelm)->field.stqe_next; \
  238. } \
  239. } while (/*CONSTCOND*/0)
  240. #define STAILQ_FOREACH(var, head, field) \
  241. for ((var) = ((head)->stqh_first); \
  242. (var); \
  243. (var) = ((var)->field.stqe_next))
  244. /*
  245. * Singly-linked Tail queue access methods.
  246. */
  247. #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
  248. #define STAILQ_FIRST(head) ((head)->stqh_first)
  249. #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
  250. /*
  251. * Simple queue definitions.
  252. */
  253. #define SIMPLEQ_HEAD(name, type) \
  254. struct name { \
  255. struct type *sqh_first; /* first element */ \
  256. struct type **sqh_last; /* addr of last next element */ \
  257. }
  258. #define SIMPLEQ_HEAD_INITIALIZER(head) \
  259. { NULL, &(head).sqh_first }
  260. #define SIMPLEQ_ENTRY(type) \
  261. struct { \
  262. struct type *sqe_next; /* next element */ \
  263. }
  264. /*
  265. * Simple queue functions.
  266. */
  267. #define SIMPLEQ_INIT(head) do { \
  268. (head)->sqh_first = NULL; \
  269. (head)->sqh_last = &(head)->sqh_first; \
  270. } while (/*CONSTCOND*/0)
  271. #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
  272. if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
  273. (head)->sqh_last = &(elm)->field.sqe_next; \
  274. (head)->sqh_first = (elm); \
  275. } while (/*CONSTCOND*/0)
  276. #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
  277. (elm)->field.sqe_next = NULL; \
  278. *(head)->sqh_last = (elm); \
  279. (head)->sqh_last = &(elm)->field.sqe_next; \
  280. } while (/*CONSTCOND*/0)
  281. #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  282. if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
  283. (head)->sqh_last = &(elm)->field.sqe_next; \
  284. (listelm)->field.sqe_next = (elm); \
  285. } while (/*CONSTCOND*/0)
  286. #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
  287. if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
  288. (head)->sqh_last = &(head)->sqh_first; \
  289. } while (/*CONSTCOND*/0)
  290. #define SIMPLEQ_REMOVE(head, elm, type, field) do { \
  291. if ((head)->sqh_first == (elm)) { \
  292. SIMPLEQ_REMOVE_HEAD((head), field); \
  293. } else { \
  294. struct type *curelm = (head)->sqh_first; \
  295. while (curelm->field.sqe_next != (elm)) \
  296. curelm = curelm->field.sqe_next; \
  297. if ((curelm->field.sqe_next = \
  298. curelm->field.sqe_next->field.sqe_next) == NULL) \
  299. (head)->sqh_last = &(curelm)->field.sqe_next; \
  300. } \
  301. } while (/*CONSTCOND*/0)
  302. #define SIMPLEQ_FOREACH(var, head, field) \
  303. for ((var) = ((head)->sqh_first); \
  304. (var); \
  305. (var) = ((var)->field.sqe_next))
  306. /*
  307. * Simple queue access methods.
  308. */
  309. #define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
  310. #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
  311. #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
  312. /*
  313. * Tail queue definitions.
  314. */
  315. #define _TAILQ_HEAD(name, type, qual) \
  316. struct name { \
  317. qual type *tqh_first; /* first element */ \
  318. qual type *qual *tqh_last; /* addr of last next element */ \
  319. }
  320. #define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,)
  321. #define TAILQ_HEAD_INITIALIZER(head) \
  322. { NULL, &(head).tqh_first }
  323. #define _TAILQ_ENTRY(type, qual) \
  324. struct { \
  325. qual type *tqe_next; /* next element */ \
  326. qual type *qual *tqe_prev; /* address of previous next element */\
  327. }
  328. #define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,)
  329. /*
  330. * Tail queue functions.
  331. */
  332. #define TAILQ_INIT(head) do { \
  333. (head)->tqh_first = NULL; \
  334. (head)->tqh_last = &(head)->tqh_first; \
  335. } while (/*CONSTCOND*/0)
  336. #define TAILQ_INSERT_HEAD(head, elm, field) do { \
  337. QUEUEDEBUG_TAILQ_INSERT_HEAD((head), (elm), field) \
  338. if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
  339. (head)->tqh_first->field.tqe_prev = \
  340. &(elm)->field.tqe_next; \
  341. else \
  342. (head)->tqh_last = &(elm)->field.tqe_next; \
  343. (head)->tqh_first = (elm); \
  344. (elm)->field.tqe_prev = &(head)->tqh_first; \
  345. } while (/*CONSTCOND*/0)
  346. #define TAILQ_INSERT_TAIL(head, elm, field) do { \
  347. QUEUEDEBUG_TAILQ_INSERT_TAIL((head), (elm), field) \
  348. (elm)->field.tqe_next = NULL; \
  349. (elm)->field.tqe_prev = (head)->tqh_last; \
  350. *(head)->tqh_last = (elm); \
  351. (head)->tqh_last = &(elm)->field.tqe_next; \
  352. } while (/*CONSTCOND*/0)
  353. #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
  354. QUEUEDEBUG_TAILQ_OP((listelm), field) \
  355. if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  356. (elm)->field.tqe_next->field.tqe_prev = \
  357. &(elm)->field.tqe_next; \
  358. else \
  359. (head)->tqh_last = &(elm)->field.tqe_next; \
  360. (listelm)->field.tqe_next = (elm); \
  361. (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
  362. } while (/*CONSTCOND*/0)
  363. #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
  364. QUEUEDEBUG_TAILQ_OP((listelm), field) \
  365. (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
  366. (elm)->field.tqe_next = (listelm); \
  367. *(listelm)->field.tqe_prev = (elm); \
  368. (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
  369. } while (/*CONSTCOND*/0)
  370. #define TAILQ_REMOVE(head, elm, field) do { \
  371. QUEUEDEBUG_TAILQ_PREREMOVE((head), (elm), field) \
  372. QUEUEDEBUG_TAILQ_OP((elm), field) \
  373. if (((elm)->field.tqe_next) != NULL) \
  374. (elm)->field.tqe_next->field.tqe_prev = \
  375. (elm)->field.tqe_prev; \
  376. else \
  377. (head)->tqh_last = (elm)->field.tqe_prev; \
  378. *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
  379. QUEUEDEBUG_TAILQ_POSTREMOVE((elm), field); \
  380. } while (/*CONSTCOND*/0)
  381. #define TAILQ_FOREACH(var, head, field) \
  382. for ((var) = ((head)->tqh_first); \
  383. (var); \
  384. (var) = ((var)->field.tqe_next))
  385. #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
  386. for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
  387. (var); \
  388. (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
  389. /*
  390. * Tail queue access methods.
  391. */
  392. #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
  393. #define TAILQ_FIRST(head) ((head)->tqh_first)
  394. #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
  395. #define TAILQ_LAST(head, headname) \
  396. (*(((struct headname *)((head)->tqh_last))->tqh_last))
  397. #define TAILQ_PREV(elm, headname, field) \
  398. (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  399. /*
  400. * Circular queue definitions.
  401. */
  402. #define CIRCLEQ_HEAD(name, type) \
  403. struct name { \
  404. struct type *cqh_first; /* first element */ \
  405. struct type *cqh_last; /* last element */ \
  406. }
  407. #define CIRCLEQ_HEAD_INITIALIZER(head) \
  408. { (void *)&head, (void *)&head }
  409. #define CIRCLEQ_ENTRY(type) \
  410. struct { \
  411. struct type *cqe_next; /* next element */ \
  412. struct type *cqe_prev; /* previous element */ \
  413. }
  414. /*
  415. * Circular queue functions.
  416. */
  417. #define CIRCLEQ_INIT(head) do { \
  418. (head)->cqh_first = (void *)(head); \
  419. (head)->cqh_last = (void *)(head); \
  420. } while (/*CONSTCOND*/0)
  421. #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  422. QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
  423. QUEUEDEBUG_CIRCLEQ_ELM((head), (listelm), field) \
  424. (elm)->field.cqe_next = (listelm)->field.cqe_next; \
  425. (elm)->field.cqe_prev = (listelm); \
  426. if ((listelm)->field.cqe_next == (void *)(head)) \
  427. (head)->cqh_last = (elm); \
  428. else \
  429. (listelm)->field.cqe_next->field.cqe_prev = (elm); \
  430. (listelm)->field.cqe_next = (elm); \
  431. } while (/*CONSTCOND*/0)
  432. #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
  433. QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
  434. QUEUEDEBUG_CIRCLEQ_ELM((head), (listelm), field) \
  435. (elm)->field.cqe_next = (listelm); \
  436. (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
  437. if ((listelm)->field.cqe_prev == (void *)(head)) \
  438. (head)->cqh_first = (elm); \
  439. else \
  440. (listelm)->field.cqe_prev->field.cqe_next = (elm); \
  441. (listelm)->field.cqe_prev = (elm); \
  442. } while (/*CONSTCOND*/0)
  443. #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
  444. QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
  445. (elm)->field.cqe_next = (head)->cqh_first; \
  446. (elm)->field.cqe_prev = (void *)(head); \
  447. if ((head)->cqh_last == (void *)(head)) \
  448. (head)->cqh_last = (elm); \
  449. else \
  450. (head)->cqh_first->field.cqe_prev = (elm); \
  451. (head)->cqh_first = (elm); \
  452. } while (/*CONSTCOND*/0)
  453. #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
  454. QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
  455. (elm)->field.cqe_next = (void *)(head); \
  456. (elm)->field.cqe_prev = (head)->cqh_last; \
  457. if ((head)->cqh_first == (void *)(head)) \
  458. (head)->cqh_first = (elm); \
  459. else \
  460. (head)->cqh_last->field.cqe_next = (elm); \
  461. (head)->cqh_last = (elm); \
  462. } while (/*CONSTCOND*/0)
  463. #define CIRCLEQ_REMOVE(head, elm, field) do { \
  464. QUEUEDEBUG_CIRCLEQ_HEAD((head), field) \
  465. QUEUEDEBUG_CIRCLEQ_ELM((head), (elm), field) \
  466. if ((elm)->field.cqe_next == (void *)(head)) \
  467. (head)->cqh_last = (elm)->field.cqe_prev; \
  468. else \
  469. (elm)->field.cqe_next->field.cqe_prev = \
  470. (elm)->field.cqe_prev; \
  471. if ((elm)->field.cqe_prev == (void *)(head)) \
  472. (head)->cqh_first = (elm)->field.cqe_next; \
  473. else \
  474. (elm)->field.cqe_prev->field.cqe_next = \
  475. (elm)->field.cqe_next; \
  476. QUEUEDEBUG_CIRCLEQ_POSTREMOVE((elm), field) \
  477. } while (/*CONSTCOND*/0)
  478. #define CIRCLEQ_FOREACH(var, head, field) \
  479. for ((var) = ((head)->cqh_first); \
  480. (var) != (const void *)(head); \
  481. (var) = ((var)->field.cqe_next))
  482. #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
  483. for ((var) = ((head)->cqh_last); \
  484. (var) != (const void *)(head); \
  485. (var) = ((var)->field.cqe_prev))
  486. /*
  487. * Circular queue access methods.
  488. */
  489. #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
  490. #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
  491. #define CIRCLEQ_LAST(head) ((head)->cqh_last)
  492. #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
  493. #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
  494. #define CIRCLEQ_LOOP_NEXT(head, elm, field) \
  495. (((elm)->field.cqe_next == (void *)(head)) \
  496. ? ((head)->cqh_first) \
  497. : (elm->field.cqe_next))
  498. #define CIRCLEQ_LOOP_PREV(head, elm, field) \
  499. (((elm)->field.cqe_prev == (void *)(head)) \
  500. ? ((head)->cqh_last) \
  501. : (elm->field.cqe_prev))
  502. #endif /* sys/queue.h */