123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- /* bdtrl.c
- *
- * Binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * long double p, y, bdtrl();
- *
- * y = bdtrl( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the Binomial
- * probability density:
- *
- * k
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points (k,n,p) with a and b between 0
- * and 10000 and p between 0 and 1.
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,10000 3000 1.6e-14 2.2e-15
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrl domain k < 0 0.0
- * n < k
- * x < 0, x > 1
- *
- */
- /* bdtrcl()
- *
- * Complemented binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * long double p, y, bdtrcl();
- *
- * y = bdtrcl( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 through n of the Binomial
- * probability density:
- *
- * n
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * See incbet.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrcl domain x<0, x>1, n<k 0.0
- */
- /* bdtril()
- *
- * Inverse binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * long double p, y, bdtril();
- *
- * p = bdtril( k, n, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the event probability p such that the sum of the
- * terms 0 through k of the Binomial probability density
- * is equal to the given cumulative probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relation
- *
- * 1 - p = incbi( n-k, k+1, y ).
- *
- * ACCURACY:
- *
- * See incbi.c.
- * Tested at random k, n between 1 and 10000. The "domain" refers to p:
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1 3500 2.0e-15 8.2e-17
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtril domain k < 0, n <= k 0.0
- * x < 0, x > 1
- */
- /* bdtr() */
- /*
- Cephes Math Library Release 2.3: March, 1995
- Copyright 1984, 1995 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef ANSIPROT
- extern long double incbetl ( long double, long double, long double );
- extern long double incbil ( long double, long double, long double );
- extern long double powl ( long double, long double );
- extern long double expm1l ( long double );
- extern long double log1pl ( long double );
- #else
- long double incbetl(), incbil(), powl(), expm1l(), log1pl();
- #endif
- long double bdtrcl( k, n, p )
- int k, n;
- long double p;
- {
- long double dk, dn;
- if( (p < 0.0L) || (p > 1.0L) )
- goto domerr;
- if( k < 0 )
- return( 1.0L );
- if( n < k )
- {
- domerr:
- mtherr( "bdtrcl", DOMAIN );
- return( 0.0L );
- }
- if( k == n )
- return( 0.0L );
- dn = n - k;
- if( k == 0 )
- {
- if( p < .01L )
- dk = -expm1l( dn * log1pl(-p) );
- else
- dk = 1.0L - powl( 1.0L-p, dn );
- }
- else
- {
- dk = k + 1;
- dk = incbetl( dk, dn, p );
- }
- return( dk );
- }
- long double bdtrl( k, n, p )
- int k, n;
- long double p;
- {
- long double dk, dn, q;
- if( (p < 0.0L) || (p > 1.0L) )
- goto domerr;
- if( (k < 0) || (n < k) )
- {
- domerr:
- mtherr( "bdtrl", DOMAIN );
- return( 0.0L );
- }
- if( k == n )
- return( 1.0L );
- q = 1.0L - p;
- dn = n - k;
- if( k == 0 )
- {
- dk = powl( q, dn );
- }
- else
- {
- dk = k + 1;
- dk = incbetl( dn, dk, q );
- }
- return( dk );
- }
- long double bdtril( k, n, y )
- int k, n;
- long double y;
- {
- long double dk, dn, p;
- if( (y < 0.0L) || (y > 1.0L) )
- goto domerr;
- if( (k < 0) || (n <= k) )
- {
- domerr:
- mtherr( "bdtril", DOMAIN );
- return( 0.0L );
- }
- dn = n - k;
- if( k == 0 )
- {
- if( y > 0.8L )
- p = -expm1l( log1pl(y-1.0L) / dn );
- else
- p = 1.0L - powl( y, 1.0L/dn );
- }
- else
- {
- dk = k + 1;
- p = incbetl( dn, dk, y );
- if( p > 0.5 )
- p = incbil( dk, dn, 1.0L-y );
- else
- p = 1.0 - incbil( dn, dk, y );
- }
- return( p );
- }
|