123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764 |
- /* gammal.c
- *
- * Gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, gammal();
- * extern int sgngam;
- *
- * y = gammal( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns gamma function of the argument. The result is
- * correctly signed, and the sign (+1 or -1) is also
- * returned in a global (extern) variable named sgngam.
- * This variable is also filled in by the logarithmic gamma
- * function lgam().
- *
- * Arguments |x| <= 13 are reduced by recurrence and the function
- * approximated by a rational function of degree 7/8 in the
- * interval (2,3). Large arguments are handled by Stirling's
- * formula. Large negative arguments are made positive using
- * a reflection formula.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -40,+40 10000 3.6e-19 7.9e-20
- * IEEE -1755,+1755 10000 4.8e-18 6.5e-19
- *
- * Accuracy for large arguments is dominated by error in powl().
- *
- */
- /* lgaml()
- *
- * Natural logarithm of gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, lgaml();
- * extern int sgngam;
- *
- * y = lgaml( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of the absolute
- * value of the gamma function of the argument.
- * The sign (+1 or -1) of the gamma function is returned in a
- * global (extern) variable named sgngam.
- *
- * For arguments greater than 33, the logarithm of the gamma
- * function is approximated by the logarithmic version of
- * Stirling's formula using a polynomial approximation of
- * degree 4. Arguments between -33 and +33 are reduced by
- * recurrence to the interval [2,3] of a rational approximation.
- * The cosecant reflection formula is employed for arguments
- * less than -33.
- *
- * Arguments greater than MAXLGML (10^4928) return MAXNUML.
- *
- *
- *
- * ACCURACY:
- *
- *
- * arithmetic domain # trials peak rms
- * IEEE -40, 40 100000 2.2e-19 4.6e-20
- * IEEE 10^-2000,10^+2000 20000 1.6e-19 3.3e-20
- * The error criterion was relative when the function magnitude
- * was greater than one but absolute when it was less than one.
- *
- */
- /* gamma.c */
- /* gamma function */
- /*
- Copyright 1994 by Stephen L. Moshier
- */
- #include <math.h>
- /*
- gamma(x+2) = gamma(x+2) P(x)/Q(x)
- 0 <= x <= 1
- Relative error
- n=7, d=8
- Peak error = 1.83e-20
- Relative error spread = 8.4e-23
- */
- #if UNK
- static long double P[8] = {
- 4.212760487471622013093E-5L,
- 4.542931960608009155600E-4L,
- 4.092666828394035500949E-3L,
- 2.385363243461108252554E-2L,
- 1.113062816019361559013E-1L,
- 3.629515436640239168939E-1L,
- 8.378004301573126728826E-1L,
- 1.000000000000000000009E0L,
- };
- static long double Q[9] = {
- -1.397148517476170440917E-5L,
- 2.346584059160635244282E-4L,
- -1.237799246653152231188E-3L,
- -7.955933682494738320586E-4L,
- 2.773706565840072979165E-2L,
- -4.633887671244534213831E-2L,
- -2.243510905670329164562E-1L,
- 4.150160950588455434583E-1L,
- 9.999999999999999999908E-1L,
- };
- #endif
- #if IBMPC
- static short P[] = {
- 0x434a,0x3f22,0x2bda,0xb0b2,0x3ff0, XPD
- 0xf5aa,0xe82f,0x335b,0xee2e,0x3ff3, XPD
- 0xbe6c,0x3757,0xc717,0x861b,0x3ff7, XPD
- 0x7f43,0x5196,0xb166,0xc368,0x3ff9, XPD
- 0x9549,0x8eb5,0x8c3a,0xe3f4,0x3ffb, XPD
- 0x8d75,0x23af,0xc8e4,0xb9d4,0x3ffd, XPD
- 0x29cf,0x19b3,0x16c8,0xd67a,0x3ffe, XPD
- 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
- };
- static short Q[] = {
- 0x5473,0x2de8,0x1268,0xea67,0xbfee, XPD
- 0x334b,0xc2f0,0xa2dd,0xf60e,0x3ff2, XPD
- 0xbeed,0x1853,0xa691,0xa23d,0xbff5, XPD
- 0x296e,0x7cb1,0x5dfd,0xd08f,0xbff4, XPD
- 0x0417,0x7989,0xd7bc,0xe338,0x3ff9, XPD
- 0x3295,0x3698,0xd580,0xbdcd,0xbffa, XPD
- 0x75ef,0x3ab7,0x4ad3,0xe5bc,0xbffc, XPD
- 0xe458,0x2ec7,0xfd57,0xd47c,0x3ffd, XPD
- 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
- };
- #endif
- #if MIEEE
- static long P[24] = {
- 0x3ff00000,0xb0b22bda,0x3f22434a,
- 0x3ff30000,0xee2e335b,0xe82ff5aa,
- 0x3ff70000,0x861bc717,0x3757be6c,
- 0x3ff90000,0xc368b166,0x51967f43,
- 0x3ffb0000,0xe3f48c3a,0x8eb59549,
- 0x3ffd0000,0xb9d4c8e4,0x23af8d75,
- 0x3ffe0000,0xd67a16c8,0x19b329cf,
- 0x3fff0000,0x80000000,0x00000000,
- };
- static long Q[27] = {
- 0xbfee0000,0xea671268,0x2de85473,
- 0x3ff20000,0xf60ea2dd,0xc2f0334b,
- 0xbff50000,0xa23da691,0x1853beed,
- 0xbff40000,0xd08f5dfd,0x7cb1296e,
- 0x3ff90000,0xe338d7bc,0x79890417,
- 0xbffa0000,0xbdcdd580,0x36983295,
- 0xbffc0000,0xe5bc4ad3,0x3ab775ef,
- 0x3ffd0000,0xd47cfd57,0x2ec7e458,
- 0x3fff0000,0x80000000,0x00000000,
- };
- #endif
- /*
- static long double P[] = {
- -3.01525602666895735709e0L,
- -3.25157411956062339893e1L,
- -2.92929976820724030353e2L,
- -1.70730828800510297666e3L,
- -7.96667499622741999770e3L,
- -2.59780216007146401957e4L,
- -5.99650230220855581642e4L,
- -7.15743521530849602425e4L
- };
- static long double Q[] = {
- 1.00000000000000000000e0L,
- -1.67955233807178858919e1L,
- 8.85946791747759881659e1L,
- 5.69440799097468430177e1L,
- -1.98526250512761318471e3L,
- 3.31667508019495079814e3L,
- 1.60577839621734713377e4L,
- -2.97045081369399940529e4L,
- -7.15743521530849602412e4L
- };
- */
- #define MAXGAML 1755.455L
- /*static long double LOGPI = 1.14472988584940017414L;*/
- /* Stirling's formula for the gamma function
- gamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
- z(x) = x
- 13 <= x <= 1024
- Relative error
- n=8, d=0
- Peak error = 9.44e-21
- Relative error spread = 8.8e-4
- */
- #if UNK
- static long double STIR[9] = {
- 7.147391378143610789273E-4L,
- -2.363848809501759061727E-5L,
- -5.950237554056330156018E-4L,
- 6.989332260623193171870E-5L,
- 7.840334842744753003862E-4L,
- -2.294719747873185405699E-4L,
- -2.681327161876304418288E-3L,
- 3.472222222230075327854E-3L,
- 8.333333333333331800504E-2L,
- };
- #endif
- #if IBMPC
- static short STIR[] = {
- 0x6ede,0x69f7,0x54e3,0xbb5d,0x3ff4, XPD
- 0xc395,0x0295,0x4443,0xc64b,0xbfef, XPD
- 0xba6f,0x7c59,0x5e47,0x9bfb,0xbff4, XPD
- 0x5704,0x1a39,0xb11d,0x9293,0x3ff1, XPD
- 0x30b7,0x1a21,0x98b2,0xcd87,0x3ff4, XPD
- 0xbef3,0x7023,0x6a08,0xf09e,0xbff2, XPD
- 0x3a1c,0x5ac8,0x3478,0xafb9,0xbff6, XPD
- 0xc3c9,0x906e,0x38e3,0xe38e,0x3ff6, XPD
- 0xa1d5,0xaaaa,0xaaaa,0xaaaa,0x3ffb, XPD
- };
- #endif
- #if MIEEE
- static long STIR[27] = {
- 0x3ff40000,0xbb5d54e3,0x69f76ede,
- 0xbfef0000,0xc64b4443,0x0295c395,
- 0xbff40000,0x9bfb5e47,0x7c59ba6f,
- 0x3ff10000,0x9293b11d,0x1a395704,
- 0x3ff40000,0xcd8798b2,0x1a2130b7,
- 0xbff20000,0xf09e6a08,0x7023bef3,
- 0xbff60000,0xafb93478,0x5ac83a1c,
- 0x3ff60000,0xe38e38e3,0x906ec3c9,
- 0x3ffb0000,0xaaaaaaaa,0xaaaaa1d5,
- };
- #endif
- #define MAXSTIR 1024.0L
- static long double SQTPI = 2.50662827463100050242E0L;
- /* 1/gamma(x) = z P(z)
- * z(x) = 1/x
- * 0 < x < 0.03125
- * Peak relative error 4.2e-23
- */
- #if UNK
- static long double S[9] = {
- -1.193945051381510095614E-3L,
- 7.220599478036909672331E-3L,
- -9.622023360406271645744E-3L,
- -4.219773360705915470089E-2L,
- 1.665386113720805206758E-1L,
- -4.200263503403344054473E-2L,
- -6.558780715202540684668E-1L,
- 5.772156649015328608253E-1L,
- 1.000000000000000000000E0L,
- };
- #endif
- #if IBMPC
- static short S[] = {
- 0xbaeb,0xd6d3,0x25e5,0x9c7e,0xbff5, XPD
- 0xfe9a,0xceb4,0xc74e,0xec9a,0x3ff7, XPD
- 0x9225,0xdfef,0xb0e9,0x9da5,0xbff8, XPD
- 0x10b0,0xec17,0x87dc,0xacd7,0xbffa, XPD
- 0x6b8d,0x7515,0x1905,0xaa89,0x3ffc, XPD
- 0xf183,0x126b,0xf47d,0xac0a,0xbffa, XPD
- 0x7bf6,0x57d1,0xa013,0xa7e7,0xbffe, XPD
- 0xc7a9,0x7db0,0x67e3,0x93c4,0x3ffe, XPD
- 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
- };
- #endif
- #if MIEEE
- static long S[27] = {
- 0xbff50000,0x9c7e25e5,0xd6d3baeb,
- 0x3ff70000,0xec9ac74e,0xceb4fe9a,
- 0xbff80000,0x9da5b0e9,0xdfef9225,
- 0xbffa0000,0xacd787dc,0xec1710b0,
- 0x3ffc0000,0xaa891905,0x75156b8d,
- 0xbffa0000,0xac0af47d,0x126bf183,
- 0xbffe0000,0xa7e7a013,0x57d17bf6,
- 0x3ffe0000,0x93c467e3,0x7db0c7a9,
- 0x3fff0000,0x80000000,0x00000000,
- };
- #endif
- /* 1/gamma(-x) = z P(z)
- * z(x) = 1/x
- * 0 < x < 0.03125
- * Peak relative error 5.16e-23
- * Relative error spread = 2.5e-24
- */
- #if UNK
- static long double SN[9] = {
- 1.133374167243894382010E-3L,
- 7.220837261893170325704E-3L,
- 9.621911155035976733706E-3L,
- -4.219773343731191721664E-2L,
- -1.665386113944413519335E-1L,
- -4.200263503402112910504E-2L,
- 6.558780715202536547116E-1L,
- 5.772156649015328608727E-1L,
- -1.000000000000000000000E0L,
- };
- #endif
- #if IBMPC
- static short SN[] = {
- 0x5dd1,0x02de,0xb9f7,0x948d,0x3ff5, XPD
- 0x989b,0xdd68,0xc5f1,0xec9c,0x3ff7, XPD
- 0x2ca1,0x18f0,0x386f,0x9da5,0x3ff8, XPD
- 0x783f,0x41dd,0x87d1,0xacd7,0xbffa, XPD
- 0x7a5b,0xd76d,0x1905,0xaa89,0xbffc, XPD
- 0x7f64,0x1234,0xf47d,0xac0a,0xbffa, XPD
- 0x5e26,0x57d1,0xa013,0xa7e7,0x3ffe, XPD
- 0xc7aa,0x7db0,0x67e3,0x93c4,0x3ffe, XPD
- 0x0000,0x0000,0x0000,0x8000,0xbfff, XPD
- };
- #endif
- #if MIEEE
- static long SN[27] = {
- 0x3ff50000,0x948db9f7,0x02de5dd1,
- 0x3ff70000,0xec9cc5f1,0xdd68989b,
- 0x3ff80000,0x9da5386f,0x18f02ca1,
- 0xbffa0000,0xacd787d1,0x41dd783f,
- 0xbffc0000,0xaa891905,0xd76d7a5b,
- 0xbffa0000,0xac0af47d,0x12347f64,
- 0x3ffe0000,0xa7e7a013,0x57d15e26,
- 0x3ffe0000,0x93c467e3,0x7db0c7aa,
- 0xbfff0000,0x80000000,0x00000000,
- };
- #endif
- int sgngaml = 0;
- extern int sgngaml;
- extern long double MAXLOGL, MAXNUML, PIL;
- /* #define PIL 3.14159265358979323846L */
- /* #define MAXNUML 1.189731495357231765021263853E4932L */
- #ifdef ANSIPROT
- extern long double fabsl ( long double );
- extern long double lgaml ( long double );
- extern long double logl ( long double );
- extern long double expl ( long double );
- extern long double gammal ( long double );
- extern long double sinl ( long double );
- extern long double floorl ( long double );
- extern long double powl ( long double, long double );
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- extern int isnanl ( long double );
- extern int isfinitel ( long double );
- static long double stirf ( long double );
- #else
- long double fabsl(), lgaml(), logl(), expl(), gammal(), sinl();
- long double floorl(), powl(), polevll(), p1evll(), isnanl(), isfinitel();
- static long double stirf();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- #ifdef NANS
- extern long double NANL;
- #endif
- /* Gamma function computed by Stirling's formula.
- */
- static long double stirf(x)
- long double x;
- {
- long double y, w, v;
- w = 1.0L/x;
- /* For large x, use rational coefficients from the analytical expansion. */
- if( x > 1024.0L )
- w = (((((6.97281375836585777429E-5L * w
- + 7.84039221720066627474E-4L) * w
- - 2.29472093621399176955E-4L) * w
- - 2.68132716049382716049E-3L) * w
- + 3.47222222222222222222E-3L) * w
- + 8.33333333333333333333E-2L) * w
- + 1.0L;
- else
- w = 1.0L + w * polevll( w, STIR, 8 );
- y = expl(x);
- if( x > MAXSTIR )
- { /* Avoid overflow in pow() */
- v = powl( x, 0.5L * x - 0.25L );
- y = v * (v / y);
- }
- else
- {
- y = powl( x, x - 0.5L ) / y;
- }
- y = SQTPI * y * w;
- return( y );
- }
- long double gammal(x)
- long double x;
- {
- long double p, q, z;
- int i;
- sgngaml = 1;
- #ifdef NANS
- if( isnanl(x) )
- return(NANL);
- #endif
- #ifdef INFINITIES
- if(x == INFINITYL)
- return(INFINITYL);
- #ifdef NANS
- if(x == -INFINITYL)
- goto gamnan;
- #endif
- #endif
- q = fabsl(x);
- if( q > 13.0L )
- {
- if( q > MAXGAML )
- goto goverf;
- if( x < 0.0L )
- {
- p = floorl(q);
- if( p == q )
- {
- gamnan:
- #ifdef NANS
- mtherr( "gammal", DOMAIN );
- return (NANL);
- #else
- goto goverf;
- #endif
- }
- i = p;
- if( (i & 1) == 0 )
- sgngaml = -1;
- z = q - p;
- if( z > 0.5L )
- {
- p += 1.0L;
- z = q - p;
- }
- z = q * sinl( PIL * z );
- z = fabsl(z) * stirf(q);
- if( z <= PIL/MAXNUML )
- {
- goverf:
- #ifdef INFINITIES
- return( sgngaml * INFINITYL);
- #else
- mtherr( "gammal", OVERFLOW );
- return( sgngaml * MAXNUML);
- #endif
- }
- z = PIL/z;
- }
- else
- {
- z = stirf(x);
- }
- return( sgngaml * z );
- }
- z = 1.0L;
- while( x >= 3.0L )
- {
- x -= 1.0L;
- z *= x;
- }
- while( x < -0.03125L )
- {
- z /= x;
- x += 1.0L;
- }
- if( x <= 0.03125L )
- goto small;
- while( x < 2.0L )
- {
- z /= x;
- x += 1.0L;
- }
- if( x == 2.0L )
- return(z);
- x -= 2.0L;
- p = polevll( x, P, 7 );
- q = polevll( x, Q, 8 );
- return( z * p / q );
- small:
- if( x == 0.0L )
- {
- goto gamnan;
- }
- else
- {
- if( x < 0.0L )
- {
- x = -x;
- q = z / (x * polevll( x, SN, 8 ));
- }
- else
- q = z / (x * polevll( x, S, 8 ));
- }
- return q;
- }
- /* A[]: Stirling's formula expansion of log gamma
- * B[], C[]: log gamma function between 2 and 3
- */
- /* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x A(1/x^2)
- * x >= 8
- * Peak relative error 1.51e-21
- * Relative spread of error peaks 5.67e-21
- */
- #if UNK
- static long double A[7] = {
- 4.885026142432270781165E-3L,
- -1.880801938119376907179E-3L,
- 8.412723297322498080632E-4L,
- -5.952345851765688514613E-4L,
- 7.936507795855070755671E-4L,
- -2.777777777750349603440E-3L,
- 8.333333333333331447505E-2L,
- };
- #endif
- #if IBMPC
- static short A[] = {
- 0xd984,0xcc08,0x91c2,0xa012,0x3ff7, XPD
- 0x3d91,0x0304,0x3da1,0xf685,0xbff5, XPD
- 0x3bdc,0xaad1,0xd492,0xdc88,0x3ff4, XPD
- 0x8b20,0x9fce,0x844e,0x9c09,0xbff4, XPD
- 0xf8f2,0x30e5,0x0092,0xd00d,0x3ff4, XPD
- 0x4d88,0x03a8,0x60b6,0xb60b,0xbff6, XPD
- 0x9fcc,0xaaaa,0xaaaa,0xaaaa,0x3ffb, XPD
- };
- #endif
- #if MIEEE
- static long A[21] = {
- 0x3ff70000,0xa01291c2,0xcc08d984,
- 0xbff50000,0xf6853da1,0x03043d91,
- 0x3ff40000,0xdc88d492,0xaad13bdc,
- 0xbff40000,0x9c09844e,0x9fce8b20,
- 0x3ff40000,0xd00d0092,0x30e5f8f2,
- 0xbff60000,0xb60b60b6,0x03a84d88,
- 0x3ffb0000,0xaaaaaaaa,0xaaaa9fcc,
- };
- #endif
- /* log gamma(x+2) = x B(x)/C(x)
- * 0 <= x <= 1
- * Peak relative error 7.16e-22
- * Relative spread of error peaks 4.78e-20
- */
- #if UNK
- static long double B[7] = {
- -2.163690827643812857640E3L,
- -8.723871522843511459790E4L,
- -1.104326814691464261197E6L,
- -6.111225012005214299996E6L,
- -1.625568062543700591014E7L,
- -2.003937418103815175475E7L,
- -8.875666783650703802159E6L,
- };
- static long double C[7] = {
- /* 1.000000000000000000000E0L,*/
- -5.139481484435370143617E2L,
- -3.403570840534304670537E4L,
- -6.227441164066219501697E5L,
- -4.814940379411882186630E6L,
- -1.785433287045078156959E7L,
- -3.138646407656182662088E7L,
- -2.099336717757895876142E7L,
- };
- #endif
- #if IBMPC
- static short B[] = {
- 0x9557,0x4995,0x0da1,0x873b,0xc00a, XPD
- 0xfe44,0x9af8,0x5b8c,0xaa63,0xc00f, XPD
- 0x5aa8,0x7cf5,0x3684,0x86ce,0xc013, XPD
- 0x259a,0x258c,0xf206,0xba7f,0xc015, XPD
- 0xbe18,0x1ca3,0xc0a0,0xf80a,0xc016, XPD
- 0x168f,0x2c42,0x6717,0x98e3,0xc017, XPD
- 0x2051,0x9d55,0x92c8,0x876e,0xc016, XPD
- };
- static short C[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
- 0xaa77,0xcf2f,0xae76,0x807c,0xc008, XPD
- 0xb280,0x0d74,0xb55a,0x84f3,0xc00e, XPD
- 0xa505,0xcd30,0x81dc,0x9809,0xc012, XPD
- 0x3369,0x4246,0xb8c2,0x92f0,0xc015, XPD
- 0x63cf,0x6aee,0xbe6f,0x8837,0xc017, XPD
- 0x26bb,0xccc7,0xb009,0xef75,0xc017, XPD
- 0x462b,0xbae8,0xab96,0xa02a,0xc017, XPD
- };
- #endif
- #if MIEEE
- static long B[21] = {
- 0xc00a0000,0x873b0da1,0x49959557,
- 0xc00f0000,0xaa635b8c,0x9af8fe44,
- 0xc0130000,0x86ce3684,0x7cf55aa8,
- 0xc0150000,0xba7ff206,0x258c259a,
- 0xc0160000,0xf80ac0a0,0x1ca3be18,
- 0xc0170000,0x98e36717,0x2c42168f,
- 0xc0160000,0x876e92c8,0x9d552051,
- };
- static long C[21] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0xc0080000,0x807cae76,0xcf2faa77,
- 0xc00e0000,0x84f3b55a,0x0d74b280,
- 0xc0120000,0x980981dc,0xcd30a505,
- 0xc0150000,0x92f0b8c2,0x42463369,
- 0xc0170000,0x8837be6f,0x6aee63cf,
- 0xc0170000,0xef75b009,0xccc726bb,
- 0xc0170000,0xa02aab96,0xbae8462b,
- };
- #endif
- /* log( sqrt( 2*pi ) ) */
- static long double LS2PI = 0.91893853320467274178L;
- #define MAXLGM 1.04848146839019521116e+4928L
- /* Logarithm of gamma function */
- long double lgaml(x)
- long double x;
- {
- long double p, q, w, z, f, nx;
- int i;
- sgngaml = 1;
- #ifdef NANS
- if( isnanl(x) )
- return(NANL);
- #endif
- #ifdef INFINITIES
- if( !isfinitel(x) )
- return(INFINITYL);
- #endif
- if( x < -34.0L )
- {
- q = -x;
- w = lgaml(q); /* note this modifies sgngam! */
- p = floorl(q);
- if( p == q )
- {
- #ifdef INFINITIES
- mtherr( "lgaml", SING );
- return (INFINITYL);
- #else
- goto loverf;
- #endif
- }
- i = p;
- if( (i & 1) == 0 )
- sgngaml = -1;
- else
- sgngaml = 1;
- z = q - p;
- if( z > 0.5L )
- {
- p += 1.0L;
- z = p - q;
- }
- z = q * sinl( PIL * z );
- if( z == 0.0L )
- goto loverf;
- /* z = LOGPI - logl( z ) - w; */
- z = logl( PIL/z ) - w;
- return( z );
- }
- if( x < 13.0L )
- {
- z = 1.0L;
- nx = floorl( x + 0.5L );
- f = x - nx;
- while( x >= 3.0L )
- {
- nx -= 1.0L;
- x = nx + f;
- z *= x;
- }
- while( x < 2.0L )
- {
- if( fabsl(x) <= 0.03125 )
- goto lsmall;
- z /= nx + f;
- nx += 1.0L;
- x = nx + f;
- }
- if( z < 0.0L )
- {
- sgngaml = -1;
- z = -z;
- }
- else
- sgngaml = 1;
- if( x == 2.0L )
- return( logl(z) );
- x = (nx - 2.0L) + f;
- p = x * polevll( x, B, 6 ) / p1evll( x, C, 7);
- return( logl(z) + p );
- }
- if( x > MAXLGM )
- {
- loverf:
- #ifdef INFINITIES
- return( sgngaml * INFINITYL );
- #else
- mtherr( "lgaml", OVERFLOW );
- return( sgngaml * MAXNUML );
- #endif
- }
- q = ( x - 0.5L ) * logl(x) - x + LS2PI;
- if( x > 1.0e10L )
- return(q);
- p = 1.0L/(x*x);
- q += polevll( p, A, 6 ) / x;
- return( q );
- lsmall:
- if( x == 0.0L )
- goto loverf;
- if( x < 0.0L )
- {
- x = -x;
- q = z / (x * polevll( x, SN, 8 ));
- }
- else
- q = z / (x * polevll( x, S, 8 ));
- if( q < 0.0L )
- {
- sgngaml = -1;
- q = -q;
- }
- else
- sgngaml = 1;
- q = logl( q );
- return(q);
- }
|