log2l.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. /* log2l.c
  2. *
  3. * Base 2 logarithm, long double precision
  4. *
  5. *
  6. *
  7. * SYNOPSIS:
  8. *
  9. * long double x, y, log2l();
  10. *
  11. * y = log2l( x );
  12. *
  13. *
  14. *
  15. * DESCRIPTION:
  16. *
  17. * Returns the base 2 logarithm of x.
  18. *
  19. * The argument is separated into its exponent and fractional
  20. * parts. If the exponent is between -1 and +1, the (natural)
  21. * logarithm of the fraction is approximated by
  22. *
  23. * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
  24. *
  25. * Otherwise, setting z = 2(x-1)/x+1),
  26. *
  27. * log(x) = z + z**3 P(z)/Q(z).
  28. *
  29. *
  30. *
  31. * ACCURACY:
  32. *
  33. * Relative error:
  34. * arithmetic domain # trials peak rms
  35. * IEEE 0.5, 2.0 30000 9.8e-20 2.7e-20
  36. * IEEE exp(+-10000) 70000 5.4e-20 2.3e-20
  37. *
  38. * In the tests over the interval exp(+-10000), the logarithms
  39. * of the random arguments were uniformly distributed over
  40. * [-10000, +10000].
  41. *
  42. * ERROR MESSAGES:
  43. *
  44. * log singularity: x = 0; returns -INFINITYL
  45. * log domain: x < 0; returns NANL
  46. */
  47. /*
  48. Cephes Math Library Release 2.8: May, 1998
  49. Copyright 1984, 1991, 1998 by Stephen L. Moshier
  50. */
  51. #include <math.h>
  52. /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
  53. * 1/sqrt(2) <= x < sqrt(2)
  54. * Theoretical peak relative error = 6.2e-22
  55. */
  56. #ifdef UNK
  57. static long double P[] = {
  58. 4.9962495940332550844739E-1L,
  59. 1.0767376367209449010438E1L,
  60. 7.7671073698359539859595E1L,
  61. 2.5620629828144409632571E2L,
  62. 4.2401812743503691187826E2L,
  63. 3.4258224542413922935104E2L,
  64. 1.0747524399916215149070E2L,
  65. };
  66. static long double Q[] = {
  67. /* 1.0000000000000000000000E0,*/
  68. 2.3479774160285863271658E1L,
  69. 1.9444210022760132894510E2L,
  70. 7.7952888181207260646090E2L,
  71. 1.6911722418503949084863E3L,
  72. 2.0307734695595183428202E3L,
  73. 1.2695660352705325274404E3L,
  74. 3.2242573199748645407652E2L,
  75. };
  76. #endif
  77. #ifdef IBMPC
  78. static short P[] = {
  79. 0xfe72,0xce22,0xd7b9,0xffce,0x3ffd, XPD
  80. 0xb778,0x0e34,0x2c71,0xac47,0x4002, XPD
  81. 0xea8b,0xc751,0x96f8,0x9b57,0x4005, XPD
  82. 0xfeaf,0x6a02,0x67fb,0x801a,0x4007, XPD
  83. 0x6b5a,0xf252,0x51ff,0xd402,0x4007, XPD
  84. 0x39ce,0x9f76,0x8704,0xab4a,0x4007, XPD
  85. 0x1b39,0x740b,0x532e,0xd6f3,0x4005, XPD
  86. };
  87. static short Q[] = {
  88. /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
  89. 0x2f3a,0xbf26,0x93d5,0xbbd6,0x4003, XPD
  90. 0x13c8,0x031a,0x2d7b,0xc271,0x4006, XPD
  91. 0x449d,0x1993,0xd933,0xc2e1,0x4008, XPD
  92. 0x5b65,0x574e,0x8301,0xd365,0x4009, XPD
  93. 0xa65d,0x3bd2,0xc043,0xfdd8,0x4009, XPD
  94. 0x3b21,0xffea,0x1cf5,0x9eb2,0x4009, XPD
  95. 0x545c,0xd708,0x7e62,0xa136,0x4007, XPD
  96. };
  97. #endif
  98. #ifdef MIEEE
  99. static long P[] = {
  100. 0x3ffd0000,0xffced7b9,0xce22fe72,
  101. 0x40020000,0xac472c71,0x0e34b778,
  102. 0x40050000,0x9b5796f8,0xc751ea8b,
  103. 0x40070000,0x801a67fb,0x6a02feaf,
  104. 0x40070000,0xd40251ff,0xf2526b5a,
  105. 0x40070000,0xab4a8704,0x9f7639ce,
  106. 0x40050000,0xd6f3532e,0x740b1b39,
  107. };
  108. static long Q[] = {
  109. /*0x3fff0000,0x80000000,0x00000000,*/
  110. 0x40030000,0xbbd693d5,0xbf262f3a,
  111. 0x40060000,0xc2712d7b,0x031a13c8,
  112. 0x40080000,0xc2e1d933,0x1993449d,
  113. 0x40090000,0xd3658301,0x574e5b65,
  114. 0x40090000,0xfdd8c043,0x3bd2a65d,
  115. 0x40090000,0x9eb21cf5,0xffea3b21,
  116. 0x40070000,0xa1367e62,0xd708545c,
  117. };
  118. #endif
  119. /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
  120. * where z = 2(x-1)/(x+1)
  121. * 1/sqrt(2) <= x < sqrt(2)
  122. * Theoretical peak relative error = 6.16e-22
  123. */
  124. #ifdef UNK
  125. static long double R[4] = {
  126. 1.9757429581415468984296E-3L,
  127. -7.1990767473014147232598E-1L,
  128. 1.0777257190312272158094E1L,
  129. -3.5717684488096787370998E1L,
  130. };
  131. static long double S[4] = {
  132. /* 1.00000000000000000000E0L,*/
  133. -2.6201045551331104417768E1L,
  134. 1.9361891836232102174846E2L,
  135. -4.2861221385716144629696E2L,
  136. };
  137. /* log2(e) - 1 */
  138. #define LOG2EA 4.4269504088896340735992e-1L
  139. #endif
  140. #ifdef IBMPC
  141. static short R[] = {
  142. 0x6ef4,0xf922,0x7763,0x817b,0x3ff6, XPD
  143. 0x15fd,0x1af9,0xde8f,0xb84b,0xbffe, XPD
  144. 0x8b96,0x4f8d,0xa53c,0xac6f,0x4002, XPD
  145. 0x8932,0xb4e3,0xe8ae,0x8ede,0xc004, XPD
  146. };
  147. static short S[] = {
  148. /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
  149. 0x7ce4,0x1fc9,0xbdc5,0xd19b,0xc003, XPD
  150. 0x0af3,0x0d10,0x716f,0xc19e,0x4006, XPD
  151. 0x4d7d,0x0f55,0x5d06,0xd64e,0xc007, XPD
  152. };
  153. static short LG2EA[] = {0xc2ef,0x705f,0xeca5,0xe2a8,0x3ffd, XPD};
  154. #define LOG2EA *(long double *)LG2EA
  155. #endif
  156. #ifdef MIEEE
  157. static long R[12] = {
  158. 0x3ff60000,0x817b7763,0xf9226ef4,
  159. 0xbffe0000,0xb84bde8f,0x1af915fd,
  160. 0x40020000,0xac6fa53c,0x4f8d8b96,
  161. 0xc0040000,0x8edee8ae,0xb4e38932,
  162. };
  163. static long S[9] = {
  164. /*0x3fff0000,0x80000000,0x00000000,*/
  165. 0xc0030000,0xd19bbdc5,0x1fc97ce4,
  166. 0x40060000,0xc19e716f,0x0d100af3,
  167. 0xc0070000,0xd64e5d06,0x0f554d7d,
  168. };
  169. static long LG2EA[] = {0x3ffd0000,0xe2a8eca5,0x705fc2ef};
  170. #define LOG2EA *(long double *)LG2EA
  171. #endif
  172. #define SQRTH 0.70710678118654752440L
  173. extern long double MINLOGL;
  174. #ifdef ANSIPROT
  175. extern long double frexpl ( long double, int * );
  176. extern long double ldexpl ( long double, int );
  177. extern long double polevll ( long double, void *, int );
  178. extern long double p1evll ( long double, void *, int );
  179. extern int isnanl ( long double );
  180. #else
  181. long double frexpl(), ldexpl(), polevll(), p1evll();
  182. extern int isnanl ();
  183. #endif
  184. #ifdef INFINITIES
  185. extern long double INFINITYL;
  186. #endif
  187. #ifdef NANS
  188. extern long double NANL;
  189. #endif
  190. long double log2l(x)
  191. long double x;
  192. {
  193. VOLATILE long double z;
  194. long double y;
  195. int e;
  196. #ifdef NANS
  197. if( isnanl(x) )
  198. return(x);
  199. #endif
  200. #ifdef INFINITIES
  201. if( x == INFINITYL )
  202. return(x);
  203. #endif
  204. /* Test for domain */
  205. if( x <= 0.0L )
  206. {
  207. if( x == 0.0L )
  208. {
  209. #ifdef INFINITIES
  210. return( -INFINITYL );
  211. #else
  212. mtherr( "log2l", SING );
  213. return( -16384.0L );
  214. #endif
  215. }
  216. else
  217. {
  218. #ifdef NANS
  219. return( NANL );
  220. #else
  221. mtherr( "log2l", DOMAIN );
  222. return( -16384.0L );
  223. #endif
  224. }
  225. }
  226. /* separate mantissa from exponent */
  227. /* Note, frexp is used so that denormal numbers
  228. * will be handled properly.
  229. */
  230. x = frexpl( x, &e );
  231. /* logarithm using log(x) = z + z**3 P(z)/Q(z),
  232. * where z = 2(x-1)/x+1)
  233. */
  234. if( (e > 2) || (e < -2) )
  235. {
  236. if( x < SQRTH )
  237. { /* 2( 2x-1 )/( 2x+1 ) */
  238. e -= 1;
  239. z = x - 0.5L;
  240. y = 0.5L * z + 0.5L;
  241. }
  242. else
  243. { /* 2 (x-1)/(x+1) */
  244. z = x - 0.5L;
  245. z -= 0.5L;
  246. y = 0.5L * x + 0.5L;
  247. }
  248. x = z / y;
  249. z = x*x;
  250. y = x * ( z * polevll( z, R, 3 ) / p1evll( z, S, 3 ) );
  251. goto done;
  252. }
  253. /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
  254. if( x < SQRTH )
  255. {
  256. e -= 1;
  257. x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */
  258. }
  259. else
  260. {
  261. x = x - 1.0L;
  262. }
  263. z = x*x;
  264. y = x * ( z * polevll( x, P, 6 ) / p1evll( x, Q, 7 ) );
  265. y = y - ldexpl( z, -1 ); /* -0.5x^2 + ... */
  266. done:
  267. /* Multiply log of fraction by log2(e)
  268. * and base 2 exponent by 1
  269. *
  270. * ***CAUTION***
  271. *
  272. * This sequence of operations is critical and it may
  273. * be horribly defeated by some compiler optimizers.
  274. */
  275. z = y * LOG2EA;
  276. z += x * LOG2EA;
  277. z += y;
  278. z += x;
  279. z += e;
  280. return( z );
  281. }