123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 |
- /* log2l.c
- *
- * Base 2 logarithm, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, log2l();
- *
- * y = log2l( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base 2 logarithm of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the (natural)
- * logarithm of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
- *
- * Otherwise, setting z = 2(x-1)/x+1),
- *
- * log(x) = z + z**3 P(z)/Q(z).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 30000 9.8e-20 2.7e-20
- * IEEE exp(+-10000) 70000 5.4e-20 2.3e-20
- *
- * In the tests over the interval exp(+-10000), the logarithms
- * of the random arguments were uniformly distributed over
- * [-10000, +10000].
- *
- * ERROR MESSAGES:
- *
- * log singularity: x = 0; returns -INFINITYL
- * log domain: x < 0; returns NANL
- */
- /*
- Cephes Math Library Release 2.8: May, 1998
- Copyright 1984, 1991, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 6.2e-22
- */
- #ifdef UNK
- static long double P[] = {
- 4.9962495940332550844739E-1L,
- 1.0767376367209449010438E1L,
- 7.7671073698359539859595E1L,
- 2.5620629828144409632571E2L,
- 4.2401812743503691187826E2L,
- 3.4258224542413922935104E2L,
- 1.0747524399916215149070E2L,
- };
- static long double Q[] = {
- /* 1.0000000000000000000000E0,*/
- 2.3479774160285863271658E1L,
- 1.9444210022760132894510E2L,
- 7.7952888181207260646090E2L,
- 1.6911722418503949084863E3L,
- 2.0307734695595183428202E3L,
- 1.2695660352705325274404E3L,
- 3.2242573199748645407652E2L,
- };
- #endif
- #ifdef IBMPC
- static short P[] = {
- 0xfe72,0xce22,0xd7b9,0xffce,0x3ffd, XPD
- 0xb778,0x0e34,0x2c71,0xac47,0x4002, XPD
- 0xea8b,0xc751,0x96f8,0x9b57,0x4005, XPD
- 0xfeaf,0x6a02,0x67fb,0x801a,0x4007, XPD
- 0x6b5a,0xf252,0x51ff,0xd402,0x4007, XPD
- 0x39ce,0x9f76,0x8704,0xab4a,0x4007, XPD
- 0x1b39,0x740b,0x532e,0xd6f3,0x4005, XPD
- };
- static short Q[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0x2f3a,0xbf26,0x93d5,0xbbd6,0x4003, XPD
- 0x13c8,0x031a,0x2d7b,0xc271,0x4006, XPD
- 0x449d,0x1993,0xd933,0xc2e1,0x4008, XPD
- 0x5b65,0x574e,0x8301,0xd365,0x4009, XPD
- 0xa65d,0x3bd2,0xc043,0xfdd8,0x4009, XPD
- 0x3b21,0xffea,0x1cf5,0x9eb2,0x4009, XPD
- 0x545c,0xd708,0x7e62,0xa136,0x4007, XPD
- };
- #endif
- #ifdef MIEEE
- static long P[] = {
- 0x3ffd0000,0xffced7b9,0xce22fe72,
- 0x40020000,0xac472c71,0x0e34b778,
- 0x40050000,0x9b5796f8,0xc751ea8b,
- 0x40070000,0x801a67fb,0x6a02feaf,
- 0x40070000,0xd40251ff,0xf2526b5a,
- 0x40070000,0xab4a8704,0x9f7639ce,
- 0x40050000,0xd6f3532e,0x740b1b39,
- };
- static long Q[] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0x40030000,0xbbd693d5,0xbf262f3a,
- 0x40060000,0xc2712d7b,0x031a13c8,
- 0x40080000,0xc2e1d933,0x1993449d,
- 0x40090000,0xd3658301,0x574e5b65,
- 0x40090000,0xfdd8c043,0x3bd2a65d,
- 0x40090000,0x9eb21cf5,0xffea3b21,
- 0x40070000,0xa1367e62,0xd708545c,
- };
- #endif
- /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
- * where z = 2(x-1)/(x+1)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 6.16e-22
- */
- #ifdef UNK
- static long double R[4] = {
- 1.9757429581415468984296E-3L,
- -7.1990767473014147232598E-1L,
- 1.0777257190312272158094E1L,
- -3.5717684488096787370998E1L,
- };
- static long double S[4] = {
- /* 1.00000000000000000000E0L,*/
- -2.6201045551331104417768E1L,
- 1.9361891836232102174846E2L,
- -4.2861221385716144629696E2L,
- };
- /* log2(e) - 1 */
- #define LOG2EA 4.4269504088896340735992e-1L
- #endif
- #ifdef IBMPC
- static short R[] = {
- 0x6ef4,0xf922,0x7763,0x817b,0x3ff6, XPD
- 0x15fd,0x1af9,0xde8f,0xb84b,0xbffe, XPD
- 0x8b96,0x4f8d,0xa53c,0xac6f,0x4002, XPD
- 0x8932,0xb4e3,0xe8ae,0x8ede,0xc004, XPD
- };
- static short S[] = {
- /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
- 0x7ce4,0x1fc9,0xbdc5,0xd19b,0xc003, XPD
- 0x0af3,0x0d10,0x716f,0xc19e,0x4006, XPD
- 0x4d7d,0x0f55,0x5d06,0xd64e,0xc007, XPD
- };
- static short LG2EA[] = {0xc2ef,0x705f,0xeca5,0xe2a8,0x3ffd, XPD};
- #define LOG2EA *(long double *)LG2EA
- #endif
- #ifdef MIEEE
- static long R[12] = {
- 0x3ff60000,0x817b7763,0xf9226ef4,
- 0xbffe0000,0xb84bde8f,0x1af915fd,
- 0x40020000,0xac6fa53c,0x4f8d8b96,
- 0xc0040000,0x8edee8ae,0xb4e38932,
- };
- static long S[9] = {
- /*0x3fff0000,0x80000000,0x00000000,*/
- 0xc0030000,0xd19bbdc5,0x1fc97ce4,
- 0x40060000,0xc19e716f,0x0d100af3,
- 0xc0070000,0xd64e5d06,0x0f554d7d,
- };
- static long LG2EA[] = {0x3ffd0000,0xe2a8eca5,0x705fc2ef};
- #define LOG2EA *(long double *)LG2EA
- #endif
- #define SQRTH 0.70710678118654752440L
- extern long double MINLOGL;
- #ifdef ANSIPROT
- extern long double frexpl ( long double, int * );
- extern long double ldexpl ( long double, int );
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- extern int isnanl ( long double );
- #else
- long double frexpl(), ldexpl(), polevll(), p1evll();
- extern int isnanl ();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- #ifdef NANS
- extern long double NANL;
- #endif
- long double log2l(x)
- long double x;
- {
- VOLATILE long double z;
- long double y;
- int e;
- #ifdef NANS
- if( isnanl(x) )
- return(x);
- #endif
- #ifdef INFINITIES
- if( x == INFINITYL )
- return(x);
- #endif
- /* Test for domain */
- if( x <= 0.0L )
- {
- if( x == 0.0L )
- {
- #ifdef INFINITIES
- return( -INFINITYL );
- #else
- mtherr( "log2l", SING );
- return( -16384.0L );
- #endif
- }
- else
- {
- #ifdef NANS
- return( NANL );
- #else
- mtherr( "log2l", DOMAIN );
- return( -16384.0L );
- #endif
- }
- }
- /* separate mantissa from exponent */
- /* Note, frexp is used so that denormal numbers
- * will be handled properly.
- */
- x = frexpl( x, &e );
- /* logarithm using log(x) = z + z**3 P(z)/Q(z),
- * where z = 2(x-1)/x+1)
- */
- if( (e > 2) || (e < -2) )
- {
- if( x < SQRTH )
- { /* 2( 2x-1 )/( 2x+1 ) */
- e -= 1;
- z = x - 0.5L;
- y = 0.5L * z + 0.5L;
- }
- else
- { /* 2 (x-1)/(x+1) */
- z = x - 0.5L;
- z -= 0.5L;
- y = 0.5L * x + 0.5L;
- }
- x = z / y;
- z = x*x;
- y = x * ( z * polevll( z, R, 3 ) / p1evll( z, S, 3 ) );
- goto done;
- }
- /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
- if( x < SQRTH )
- {
- e -= 1;
- x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */
- }
- else
- {
- x = x - 1.0L;
- }
- z = x*x;
- y = x * ( z * polevll( x, P, 6 ) / p1evll( x, Q, 7 ) );
- y = y - ldexpl( z, -1 ); /* -0.5x^2 + ... */
- done:
- /* Multiply log of fraction by log2(e)
- * and base 2 exponent by 1
- *
- * ***CAUTION***
- *
- * This sequence of operations is critical and it may
- * be horribly defeated by some compiler optimizers.
- */
- z = y * LOG2EA;
- z += x * LOG2EA;
- z += y;
- z += x;
- z += e;
- return( z );
- }
|