123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- /* ynl.c
- *
- * Bessel function of second kind of integer order
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, ynl();
- * int n;
- *
- * y = ynl( n, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns Bessel function of order n, where n is a
- * (possibly negative) integer.
- *
- * The function is evaluated by forward recurrence on
- * n, starting with values computed by the routines
- * y0l() and y1l().
- *
- * If n = 0 or 1 the routine for y0l or y1l is called
- * directly.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Absolute error, except relative error when y > 1.
- * x >= 0, -30 <= n <= +30.
- * arithmetic domain # trials peak rms
- * IEEE -30, 30 10000 1.3e-18 1.8e-19
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ynl singularity x = 0 MAXNUML
- * ynl overflow MAXNUML
- *
- * Spot checked against tables for x, n between 0 and 100.
- *
- */
- /*
- Cephes Math Library Release 2.1: December, 1988
- Copyright 1984, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- extern long double MAXNUML;
- #ifdef ANSIPROT
- extern long double y0l ( long double );
- extern long double y1l ( long double );
- #else
- long double y0l(), y1l();
- #endif
- long double ynl( n, x )
- int n;
- long double x;
- {
- long double an, anm1, anm2, r;
- int k, sign;
- if( n < 0 )
- {
- n = -n;
- if( (n & 1) == 0 ) /* -1**n */
- sign = 1;
- else
- sign = -1;
- }
- else
- sign = 1;
- if( n == 0 )
- return( sign * y0l(x) );
- if( n == 1 )
- return( sign * y1l(x) );
- /* test for overflow */
- if( x <= 0.0L )
- {
- mtherr( "ynl", SING );
- return( -MAXNUML );
- }
- /* forward recurrence on n */
- anm2 = y0l(x);
- anm1 = y1l(x);
- k = 1;
- r = 2 * k;
- do
- {
- an = r * anm1 / x - anm2;
- anm2 = anm1;
- anm1 = an;
- r += 2.0L;
- ++k;
- }
- while( k < n );
- return( sign * an );
- }
|