des.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729
  1. /*
  2. * FreeSec: libcrypt
  3. *
  4. * Copyright (c) 1994 David Burren
  5. * All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 4. Neither the name of the author nor the names of other contributors
  16. * may be used to endorse or promote products derived from this software
  17. * without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  23. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  29. * SUCH DAMAGE.
  30. *
  31. *
  32. * This is an original implementation of the DES and the crypt(3) interfaces
  33. * by David Burren <davidb@werj.com.au>.
  34. *
  35. * An excellent reference on the underlying algorithm (and related
  36. * algorithms) is:
  37. *
  38. * B. Schneier, Applied Cryptography: protocols, algorithms,
  39. * and source code in C, John Wiley & Sons, 1994.
  40. *
  41. * Note that in that book's description of DES the lookups for the initial,
  42. * pbox, and final permutations are inverted (this has been brought to the
  43. * attention of the author). A list of errata for this book has been
  44. * posted to the sci.crypt newsgroup by the author and is available for FTP.
  45. *
  46. * NOTE:
  47. * This file must copy certain chunks of crypt.c for legal reasons.
  48. * crypt.c can only export the interface crypt(), to make binaries
  49. * exportable from the USA. Hence, to also have the other crypto interfaces
  50. * available we have to copy pieces...
  51. *
  52. */
  53. #define __FORCE_GLIBC
  54. #include <sys/cdefs.h>
  55. #include <sys/types.h>
  56. #include <sys/param.h>
  57. #include <netinet/in.h>
  58. #include <pwd.h>
  59. #include <string.h>
  60. #include <crypt.h>
  61. static u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  62. static u_char IP[64] = {
  63. 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
  64. 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
  65. 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
  66. 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
  67. };
  68. static u_char inv_key_perm[64];
  69. static u_char u_key_perm[56];
  70. static u_char key_perm[56] = {
  71. 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
  72. 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
  73. 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
  74. 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
  75. };
  76. static u_char key_shifts[16] = {
  77. 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
  78. };
  79. static u_char inv_comp_perm[56];
  80. static u_char comp_perm[48] = {
  81. 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
  82. 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
  83. 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
  84. 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
  85. };
  86. /*
  87. * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
  88. */
  89. static u_char u_sbox[8][64];
  90. static u_char sbox[8][64] = {
  91. {
  92. 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
  93. 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
  94. 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
  95. 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
  96. },
  97. {
  98. 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
  99. 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
  100. 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
  101. 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
  102. },
  103. {
  104. 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
  105. 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
  106. 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
  107. 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
  108. },
  109. {
  110. 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
  111. 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
  112. 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
  113. 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
  114. },
  115. {
  116. 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
  117. 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
  118. 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
  119. 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
  120. },
  121. {
  122. 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
  123. 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
  124. 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
  125. 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
  126. },
  127. {
  128. 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
  129. 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
  130. 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
  131. 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
  132. },
  133. {
  134. 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
  135. 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
  136. 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
  137. 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
  138. }
  139. };
  140. static u_char un_pbox[32];
  141. static u_char pbox[32] = {
  142. 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
  143. 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
  144. };
  145. static u_int32_t bits32[32] =
  146. {
  147. 0x80000000, 0x40000000, 0x20000000, 0x10000000,
  148. 0x08000000, 0x04000000, 0x02000000, 0x01000000,
  149. 0x00800000, 0x00400000, 0x00200000, 0x00100000,
  150. 0x00080000, 0x00040000, 0x00020000, 0x00010000,
  151. 0x00008000, 0x00004000, 0x00002000, 0x00001000,
  152. 0x00000800, 0x00000400, 0x00000200, 0x00000100,
  153. 0x00000080, 0x00000040, 0x00000020, 0x00000010,
  154. 0x00000008, 0x00000004, 0x00000002, 0x00000001
  155. };
  156. static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
  157. static u_int32_t saltbits;
  158. static int32_t old_salt;
  159. static u_int32_t *bits28, *bits24;
  160. static u_char init_perm[64], final_perm[64];
  161. static u_int32_t en_keysl[16], en_keysr[16];
  162. static u_int32_t de_keysl[16], de_keysr[16];
  163. static int des_initialised = 0;
  164. static u_char m_sbox[4][4096];
  165. static u_int32_t psbox[4][256];
  166. static u_int32_t ip_maskl[8][256], ip_maskr[8][256];
  167. static u_int32_t fp_maskl[8][256], fp_maskr[8][256];
  168. static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
  169. static u_int32_t comp_maskl[8][128], comp_maskr[8][128];
  170. static u_int32_t old_rawkey0, old_rawkey1;
  171. static __inline int ascii_to_bin(char ch)
  172. {
  173. if (ch > 'z')
  174. return(0);
  175. if (ch >= 'a')
  176. return(ch - 'a' + 38);
  177. if (ch > 'Z')
  178. return(0);
  179. if (ch >= 'A')
  180. return(ch - 'A' + 12);
  181. if (ch > '9')
  182. return(0);
  183. if (ch >= '.')
  184. return(ch - '.');
  185. return(0);
  186. }
  187. static void des_init(void)
  188. {
  189. int i, j, b, k, inbit, obit;
  190. u_int32_t *p, *il, *ir, *fl, *fr;
  191. old_rawkey0 = old_rawkey1 = 0;
  192. saltbits = 0;
  193. old_salt = 0;
  194. bits24 = (bits28 = bits32 + 4) + 4;
  195. /*
  196. * Invert the S-boxes, reordering the input bits.
  197. */
  198. for (i = 0; i < 8; i++)
  199. for (j = 0; j < 64; j++) {
  200. b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
  201. u_sbox[i][j] = sbox[i][b];
  202. }
  203. /*
  204. * Convert the inverted S-boxes into 4 arrays of 8 bits.
  205. * Each will handle 12 bits of the S-box input.
  206. */
  207. for (b = 0; b < 4; b++)
  208. for (i = 0; i < 64; i++)
  209. for (j = 0; j < 64; j++)
  210. m_sbox[b][(i << 6) | j] =
  211. (u_sbox[(b << 1)][i] << 4) |
  212. u_sbox[(b << 1) + 1][j];
  213. /*
  214. * Set up the initial & final permutations into a useful form, and
  215. * initialise the inverted key permutation.
  216. */
  217. for (i = 0; i < 64; i++) {
  218. init_perm[final_perm[i] = IP[i] - 1] = i;
  219. inv_key_perm[i] = 255;
  220. }
  221. /*
  222. * Invert the key permutation and initialise the inverted key
  223. * compression permutation.
  224. */
  225. for (i = 0; i < 56; i++) {
  226. u_key_perm[i] = key_perm[i] - 1;
  227. inv_key_perm[key_perm[i] - 1] = i;
  228. inv_comp_perm[i] = 255;
  229. }
  230. /*
  231. * Invert the key compression permutation.
  232. */
  233. for (i = 0; i < 48; i++) {
  234. inv_comp_perm[comp_perm[i] - 1] = i;
  235. }
  236. /*
  237. * Set up the OR-mask arrays for the initial and final permutations,
  238. * and for the key initial and compression permutations.
  239. */
  240. for (k = 0; k < 8; k++) {
  241. for (i = 0; i < 256; i++) {
  242. *(il = &ip_maskl[k][i]) = 0;
  243. *(ir = &ip_maskr[k][i]) = 0;
  244. *(fl = &fp_maskl[k][i]) = 0;
  245. *(fr = &fp_maskr[k][i]) = 0;
  246. for (j = 0; j < 8; j++) {
  247. inbit = 8 * k + j;
  248. if (i & bits8[j]) {
  249. if ((obit = init_perm[inbit]) < 32)
  250. *il |= bits32[obit];
  251. else
  252. *ir |= bits32[obit-32];
  253. if ((obit = final_perm[inbit]) < 32)
  254. *fl |= bits32[obit];
  255. else
  256. *fr |= bits32[obit - 32];
  257. }
  258. }
  259. }
  260. for (i = 0; i < 128; i++) {
  261. *(il = &key_perm_maskl[k][i]) = 0;
  262. *(ir = &key_perm_maskr[k][i]) = 0;
  263. for (j = 0; j < 7; j++) {
  264. inbit = 8 * k + j;
  265. if (i & bits8[j + 1]) {
  266. if ((obit = inv_key_perm[inbit]) == 255)
  267. continue;
  268. if (obit < 28)
  269. *il |= bits28[obit];
  270. else
  271. *ir |= bits28[obit - 28];
  272. }
  273. }
  274. *(il = &comp_maskl[k][i]) = 0;
  275. *(ir = &comp_maskr[k][i]) = 0;
  276. for (j = 0; j < 7; j++) {
  277. inbit = 7 * k + j;
  278. if (i & bits8[j + 1]) {
  279. if ((obit=inv_comp_perm[inbit]) == 255)
  280. continue;
  281. if (obit < 24)
  282. *il |= bits24[obit];
  283. else
  284. *ir |= bits24[obit - 24];
  285. }
  286. }
  287. }
  288. }
  289. /*
  290. * Invert the P-box permutation, and convert into OR-masks for
  291. * handling the output of the S-box arrays setup above.
  292. */
  293. for (i = 0; i < 32; i++)
  294. un_pbox[pbox[i] - 1] = i;
  295. for (b = 0; b < 4; b++)
  296. for (i = 0; i < 256; i++) {
  297. *(p = &psbox[b][i]) = 0;
  298. for (j = 0; j < 8; j++) {
  299. if (i & bits8[j])
  300. *p |= bits32[un_pbox[8 * b + j]];
  301. }
  302. }
  303. des_initialised = 1;
  304. }
  305. static void setup_salt(int32_t salt)
  306. {
  307. u_int32_t obit, saltbit;
  308. int i;
  309. if (salt == old_salt)
  310. return;
  311. old_salt = salt;
  312. saltbits = 0;
  313. saltbit = 1;
  314. obit = 0x800000;
  315. for (i = 0; i < 24; i++) {
  316. if (salt & saltbit)
  317. saltbits |= obit;
  318. saltbit <<= 1;
  319. obit >>= 1;
  320. }
  321. }
  322. static int do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out,
  323. int count, struct crypt_data *data)
  324. {
  325. /*
  326. * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
  327. */
  328. int round;
  329. u_int32_t l, r, *kl, *kr, *kl1, *kr1;
  330. u_int32_t f, r48l, r48r;
  331. #if 0
  332. u_int32_t *en_keysl = &(data->key[0]);
  333. u_int32_t *en_keysr = &(data->key[16]);
  334. u_int32_t *de_keysl = &(data->key[32]);
  335. u_int32_t *de_keysr = &(data->key[48]);
  336. #endif
  337. if (count == 0) {
  338. return(1);
  339. } else if (count > 0) {
  340. /*
  341. * Encrypting
  342. */
  343. kl1 = en_keysl;
  344. kr1 = en_keysr;
  345. } else {
  346. /*
  347. * Decrypting
  348. */
  349. count = -count;
  350. kl1 = de_keysl;
  351. kr1 = de_keysr;
  352. }
  353. /*
  354. * Do initial permutation (IP).
  355. */
  356. l = ip_maskl[0][l_in >> 24]
  357. | ip_maskl[1][(l_in >> 16) & 0xff]
  358. | ip_maskl[2][(l_in >> 8) & 0xff]
  359. | ip_maskl[3][l_in & 0xff]
  360. | ip_maskl[4][r_in >> 24]
  361. | ip_maskl[5][(r_in >> 16) & 0xff]
  362. | ip_maskl[6][(r_in >> 8) & 0xff]
  363. | ip_maskl[7][r_in & 0xff];
  364. r = ip_maskr[0][l_in >> 24]
  365. | ip_maskr[1][(l_in >> 16) & 0xff]
  366. | ip_maskr[2][(l_in >> 8) & 0xff]
  367. | ip_maskr[3][l_in & 0xff]
  368. | ip_maskr[4][r_in >> 24]
  369. | ip_maskr[5][(r_in >> 16) & 0xff]
  370. | ip_maskr[6][(r_in >> 8) & 0xff]
  371. | ip_maskr[7][r_in & 0xff];
  372. while (count--) {
  373. /*
  374. * Do each round.
  375. */
  376. kl = kl1;
  377. kr = kr1;
  378. round = 16;
  379. while (round--) {
  380. /*
  381. * Expand R to 48 bits (simulate the E-box).
  382. */
  383. r48l = ((r & 0x00000001) << 23)
  384. | ((r & 0xf8000000) >> 9)
  385. | ((r & 0x1f800000) >> 11)
  386. | ((r & 0x01f80000) >> 13)
  387. | ((r & 0x001f8000) >> 15);
  388. r48r = ((r & 0x0001f800) << 7)
  389. | ((r & 0x00001f80) << 5)
  390. | ((r & 0x000001f8) << 3)
  391. | ((r & 0x0000001f) << 1)
  392. | ((r & 0x80000000) >> 31);
  393. /*
  394. * Do salting for crypt() and friends, and
  395. * XOR with the permuted key.
  396. */
  397. f = (r48l ^ r48r) & saltbits;
  398. r48l ^= f ^ *kl++;
  399. r48r ^= f ^ *kr++;
  400. /*
  401. * Do sbox lookups (which shrink it back to 32 bits)
  402. * and do the pbox permutation at the same time.
  403. */
  404. f = psbox[0][m_sbox[0][r48l >> 12]]
  405. | psbox[1][m_sbox[1][r48l & 0xfff]]
  406. | psbox[2][m_sbox[2][r48r >> 12]]
  407. | psbox[3][m_sbox[3][r48r & 0xfff]];
  408. /*
  409. * Now that we've permuted things, complete f().
  410. */
  411. f ^= l;
  412. l = r;
  413. r = f;
  414. }
  415. r = l;
  416. l = f;
  417. }
  418. /*
  419. * Do final permutation (inverse of IP).
  420. */
  421. *l_out = fp_maskl[0][l >> 24]
  422. | fp_maskl[1][(l >> 16) & 0xff]
  423. | fp_maskl[2][(l >> 8) & 0xff]
  424. | fp_maskl[3][l & 0xff]
  425. | fp_maskl[4][r >> 24]
  426. | fp_maskl[5][(r >> 16) & 0xff]
  427. | fp_maskl[6][(r >> 8) & 0xff]
  428. | fp_maskl[7][r & 0xff];
  429. *r_out = fp_maskr[0][l >> 24]
  430. | fp_maskr[1][(l >> 16) & 0xff]
  431. | fp_maskr[2][(l >> 8) & 0xff]
  432. | fp_maskr[3][l & 0xff]
  433. | fp_maskr[4][r >> 24]
  434. | fp_maskr[5][(r >> 16) & 0xff]
  435. | fp_maskr[6][(r >> 8) & 0xff]
  436. | fp_maskr[7][r & 0xff];
  437. return(0);
  438. }
  439. static int des_setkey_r(const char *key, struct crypt_data *data)
  440. {
  441. u_int32_t k0, k1, rawkey0, rawkey1;
  442. int shifts, round;
  443. #if 0
  444. u_int32_t *en_keysl = &(data->key[0]);
  445. u_int32_t *en_keysr = &(data->key[16]);
  446. u_int32_t *de_keysl = &(data->key[32]);
  447. u_int32_t *de_keysr = &(data->key[48]);
  448. #endif
  449. if (!des_initialised)
  450. des_init();
  451. rawkey0 = ntohl(*(u_int32_t *) key);
  452. rawkey1 = ntohl(*(u_int32_t *) (key + 4));
  453. if ((rawkey0 | rawkey1)
  454. && rawkey0 == old_rawkey0
  455. && rawkey1 == old_rawkey1) {
  456. /*
  457. * Already setup for this key.
  458. * This optimisation fails on a zero key (which is weak and
  459. * has bad parity anyway) in order to simplify the starting
  460. * conditions.
  461. */
  462. return(0);
  463. }
  464. old_rawkey0 = rawkey0;
  465. old_rawkey1 = rawkey1;
  466. /*
  467. * Do key permutation and split into two 28-bit subkeys.
  468. */
  469. k0 = key_perm_maskl[0][rawkey0 >> 25]
  470. | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
  471. | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
  472. | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
  473. | key_perm_maskl[4][rawkey1 >> 25]
  474. | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
  475. | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
  476. | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
  477. k1 = key_perm_maskr[0][rawkey0 >> 25]
  478. | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
  479. | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
  480. | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
  481. | key_perm_maskr[4][rawkey1 >> 25]
  482. | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
  483. | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
  484. | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
  485. /*
  486. * Rotate subkeys and do compression permutation.
  487. */
  488. shifts = 0;
  489. for (round = 0; round < 16; round++) {
  490. u_int32_t t0, t1;
  491. shifts += key_shifts[round];
  492. t0 = (k0 << shifts) | (k0 >> (28 - shifts));
  493. t1 = (k1 << shifts) | (k1 >> (28 - shifts));
  494. de_keysl[15 - round] =
  495. en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
  496. | comp_maskl[1][(t0 >> 14) & 0x7f]
  497. | comp_maskl[2][(t0 >> 7) & 0x7f]
  498. | comp_maskl[3][t0 & 0x7f]
  499. | comp_maskl[4][(t1 >> 21) & 0x7f]
  500. | comp_maskl[5][(t1 >> 14) & 0x7f]
  501. | comp_maskl[6][(t1 >> 7) & 0x7f]
  502. | comp_maskl[7][t1 & 0x7f];
  503. de_keysr[15 - round] =
  504. en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
  505. | comp_maskr[1][(t0 >> 14) & 0x7f]
  506. | comp_maskr[2][(t0 >> 7) & 0x7f]
  507. | comp_maskr[3][t0 & 0x7f]
  508. | comp_maskr[4][(t1 >> 21) & 0x7f]
  509. | comp_maskr[5][(t1 >> 14) & 0x7f]
  510. | comp_maskr[6][(t1 >> 7) & 0x7f]
  511. | comp_maskr[7][t1 & 0x7f];
  512. }
  513. return(0);
  514. }
  515. static int __des_setkey_r(const char *key, struct crypt_data *data)
  516. {
  517. int i, j;
  518. u_int32_t packed_keys[2];
  519. u_char *p;
  520. p = (u_char *) packed_keys;
  521. for (i = 0; i < 8; i++) {
  522. p[i] = 0;
  523. for (j = 0; j < 8; j++)
  524. if (*key++ & 1)
  525. p[i] |= bits8[j];
  526. }
  527. return(des_setkey_r(p, data));
  528. }
  529. static int __des_encrypt_r(char *block, int flag, struct crypt_data *data)
  530. {
  531. u_int32_t io[2];
  532. u_char *p;
  533. int i, j, retval;
  534. if (!des_initialised)
  535. des_init();
  536. setup_salt((int32_t)0);
  537. p = (u_char *)block;
  538. for (i = 0; i < 2; i++) {
  539. io[i] = 0L;
  540. for (j = 0; j < 32; j++)
  541. if (*p++ & 1)
  542. io[i] |= bits32[j];
  543. }
  544. retval = do_des(io[0], io[1], io, io + 1, flag ? -1 : 1, data);
  545. for (i = 0; i < 2; i++)
  546. for (j = 0; j < 32; j++)
  547. block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;
  548. return(retval);
  549. }
  550. extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_data *data)
  551. {
  552. u_int32_t count, salt, l, r0, r1, keybuf[2];
  553. u_char *p, *q;
  554. /* This is a nice place where we can grab a bit of reentrant space...
  555. * I'd create a separate field in struct crypt_data, but this spot
  556. * should do nicely for now... */
  557. char *output = data->key.b_data;
  558. if (!des_initialised)
  559. des_init();
  560. /*
  561. * Copy the key, shifting each character up by one bit
  562. * and padding with zeros.
  563. */
  564. q = (u_char *)keybuf;
  565. while (q - (u_char *)keybuf - 8) {
  566. *q++ = *key << 1;
  567. if (*(q - 1))
  568. key++;
  569. }
  570. if (__des_setkey_r((char *)keybuf, data))
  571. return(NULL);
  572. #if 0
  573. if (*setting == _PASSWORD_EFMT1) {
  574. int i;
  575. /*
  576. * "new"-style:
  577. * setting - underscore, 4 bytes of count, 4 bytes of salt
  578. * key - unlimited characters
  579. */
  580. for (i = 1, count = 0L; i < 5; i++)
  581. count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
  582. for (i = 5, salt = 0L; i < 9; i++)
  583. salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
  584. while (*key) {
  585. /*
  586. * Encrypt the key with itself.
  587. */
  588. if (__des_encrypt_r((char *)keybuf, (char *)keybuf, 0L, 1), data)
  589. return(NULL);
  590. /*
  591. * And XOR with the next 8 characters of the key.
  592. */
  593. q = (u_char *)keybuf;
  594. while (q - (u_char *)keybuf - 8 && *key)
  595. *q++ ^= *key++ << 1;
  596. if (__des_setkey((char *)keybuf))
  597. return(NULL);
  598. }
  599. strncpy(output, setting, 9);
  600. /*
  601. * Double check that we weren't given a short setting.
  602. * If we were, the above code will probably have created
  603. * wierd values for count and salt, but we don't really care.
  604. * Just make sure the output string doesn't have an extra
  605. * NUL in it.
  606. */
  607. output[9] = '\0';
  608. p = (u_char *)output + strlen(output);
  609. } else
  610. #endif
  611. {
  612. /*
  613. * "old"-style:
  614. * setting - 2 bytes of salt
  615. * key - up to 8 characters
  616. */
  617. count = 25;
  618. salt = (ascii_to_bin(setting[1]) << 6)
  619. | ascii_to_bin(setting[0]);
  620. output[0] = setting[0];
  621. /*
  622. * If the encrypted password that the salt was extracted from
  623. * is only 1 character long, the salt will be corrupted. We
  624. * need to ensure that the output string doesn't have an extra
  625. * NUL in it!
  626. */
  627. output[1] = setting[1] ? setting[1] : output[0];
  628. p = (u_char *)output + 2;
  629. }
  630. setup_salt(salt);
  631. /*
  632. * Do it.
  633. */
  634. if (do_des(0L, 0L, &r0, &r1, (int)count, data))
  635. return(NULL);
  636. /*
  637. * Now encode the result...
  638. */
  639. l = (r0 >> 8);
  640. *p++ = ascii64[(l >> 18) & 0x3f];
  641. *p++ = ascii64[(l >> 12) & 0x3f];
  642. *p++ = ascii64[(l >> 6) & 0x3f];
  643. *p++ = ascii64[l & 0x3f];
  644. l = (r0 << 16) | ((r1 >> 16) & 0xffff);
  645. *p++ = ascii64[(l >> 18) & 0x3f];
  646. *p++ = ascii64[(l >> 12) & 0x3f];
  647. *p++ = ascii64[(l >> 6) & 0x3f];
  648. *p++ = ascii64[l & 0x3f];
  649. l = r1 << 2;
  650. *p++ = ascii64[(l >> 12) & 0x3f];
  651. *p++ = ascii64[(l >> 6) & 0x3f];
  652. *p++ = ascii64[l & 0x3f];
  653. *p = 0;
  654. return output;
  655. }
  656. #warning FIXME - setkey_r, encrypt_r, and __des_crypt_r are not really reentrant
  657. void setkey_r(const char *key, struct crypt_data *data)
  658. {
  659. __des_setkey_r(key, data);
  660. }
  661. extern void encrypt_r(char *block, int edflag, struct crypt_data *data)
  662. {
  663. __des_encrypt_r(block, edflag, data);
  664. }