s_cos.c 1.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. /*
  2. * ====================================================
  3. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  4. *
  5. * Developed at SunPro, a Sun Microsystems, Inc. business.
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. /* cos(x)
  12. * Return cosine function of x.
  13. *
  14. * kernel function:
  15. * __kernel_sin ... sine function on [-pi/4,pi/4]
  16. * __kernel_cos ... cosine function on [-pi/4,pi/4]
  17. * __ieee754_rem_pio2 ... argument reduction routine
  18. *
  19. * Method.
  20. * Let S,C and T denote the sin, cos and tan respectively on
  21. * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
  22. * in [-pi/4 , +pi/4], and let n = k mod 4.
  23. * We have
  24. *
  25. * n sin(x) cos(x) tan(x)
  26. * ----------------------------------------------------------
  27. * 0 S C T
  28. * 1 C -S -1/T
  29. * 2 -S -C T
  30. * 3 -C S -1/T
  31. * ----------------------------------------------------------
  32. *
  33. * Special cases:
  34. * Let trig be any of sin, cos, or tan.
  35. * trig(+-INF) is NaN, with signals;
  36. * trig(NaN) is that NaN;
  37. *
  38. * Accuracy:
  39. * TRIG(x) returns trig(x) nearly rounded
  40. */
  41. #include "math.h"
  42. #include "math_private.h"
  43. double cos(double x)
  44. {
  45. double y[2],z=0.0;
  46. int32_t n, ix;
  47. /* High word of x. */
  48. GET_HIGH_WORD(ix,x);
  49. /* |x| ~< pi/4 */
  50. ix &= 0x7fffffff;
  51. if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
  52. /* cos(Inf or NaN) is NaN */
  53. else if (ix>=0x7ff00000) return x-x;
  54. /* argument reduction needed */
  55. else {
  56. n = __ieee754_rem_pio2(x,y);
  57. switch(n&3) {
  58. case 0: return __kernel_cos(y[0],y[1]);
  59. case 1: return -__kernel_sin(y[0],y[1],1);
  60. case 2: return -__kernel_cos(y[0],y[1]);
  61. default:
  62. return __kernel_sin(y[0],y[1],1);
  63. }
  64. }
  65. }
  66. libm_hidden_def(cos)