e_sqrt.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. /*
  2. * ====================================================
  3. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  4. *
  5. * Developed at SunPro, a Sun Microsystems, Inc. business.
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. /* __ieee754_sqrt(x)
  12. * Return correctly rounded sqrt.
  13. * ------------------------------------------
  14. * | Use the hardware sqrt if you have one |
  15. * ------------------------------------------
  16. * Method:
  17. * Bit by bit method using integer arithmetic. (Slow, but portable)
  18. * 1. Normalization
  19. * Scale x to y in [1,4) with even powers of 2:
  20. * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
  21. * sqrt(x) = 2^k * sqrt(y)
  22. * 2. Bit by bit computation
  23. * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
  24. * i 0
  25. * i+1 2
  26. * s = 2*q , and y = 2 * ( y - q ). (1)
  27. * i i i i
  28. *
  29. * To compute q from q , one checks whether
  30. * i+1 i
  31. *
  32. * -(i+1) 2
  33. * (q + 2 ) <= y. (2)
  34. * i
  35. * -(i+1)
  36. * If (2) is false, then q = q ; otherwise q = q + 2 .
  37. * i+1 i i+1 i
  38. *
  39. * With some algebric manipulation, it is not difficult to see
  40. * that (2) is equivalent to
  41. * -(i+1)
  42. * s + 2 <= y (3)
  43. * i i
  44. *
  45. * The advantage of (3) is that s and y can be computed by
  46. * i i
  47. * the following recurrence formula:
  48. * if (3) is false
  49. *
  50. * s = s , y = y ; (4)
  51. * i+1 i i+1 i
  52. *
  53. * otherwise,
  54. * -i -(i+1)
  55. * s = s + 2 , y = y - s - 2 (5)
  56. * i+1 i i+1 i i
  57. *
  58. * One may easily use induction to prove (4) and (5).
  59. * Note. Since the left hand side of (3) contain only i+2 bits,
  60. * it does not necessary to do a full (53-bit) comparison
  61. * in (3).
  62. * 3. Final rounding
  63. * After generating the 53 bits result, we compute one more bit.
  64. * Together with the remainder, we can decide whether the
  65. * result is exact, bigger than 1/2ulp, or less than 1/2ulp
  66. * (it will never equal to 1/2ulp).
  67. * The rounding mode can be detected by checking whether
  68. * huge + tiny is equal to huge, and whether huge - tiny is
  69. * equal to huge for some floating point number "huge" and "tiny".
  70. *
  71. * Special cases:
  72. * sqrt(+-0) = +-0 ... exact
  73. * sqrt(inf) = inf
  74. * sqrt(-ve) = NaN ... with invalid signal
  75. * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
  76. *
  77. * Other methods : see the appended file at the end of the program below.
  78. *---------------
  79. */
  80. #include "math.h"
  81. #include "math_private.h"
  82. static const double one = 1.0, tiny = 1.0e-300;
  83. double __ieee754_sqrt(double x)
  84. {
  85. double z;
  86. int32_t sign = (int)0x80000000;
  87. int32_t ix0,s0,q,m,t,i;
  88. u_int32_t r,t1,s1,ix1,q1;
  89. EXTRACT_WORDS(ix0,ix1,x);
  90. /* take care of Inf and NaN */
  91. if((ix0&0x7ff00000)==0x7ff00000) {
  92. return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
  93. sqrt(-inf)=sNaN */
  94. }
  95. /* take care of zero */
  96. if(ix0<=0) {
  97. if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
  98. else if(ix0<0)
  99. return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
  100. }
  101. /* normalize x */
  102. m = (ix0>>20);
  103. if(m==0) { /* subnormal x */
  104. while(ix0==0) {
  105. m -= 21;
  106. ix0 |= (ix1>>11); ix1 <<= 21;
  107. }
  108. for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
  109. m -= i-1;
  110. ix0 |= (ix1>>(32-i));
  111. ix1 <<= i;
  112. }
  113. m -= 1023; /* unbias exponent */
  114. ix0 = (ix0&0x000fffff)|0x00100000;
  115. if(m&1){ /* odd m, double x to make it even */
  116. ix0 += ix0 + ((ix1&sign)>>31);
  117. ix1 += ix1;
  118. }
  119. m >>= 1; /* m = [m/2] */
  120. /* generate sqrt(x) bit by bit */
  121. ix0 += ix0 + ((ix1&sign)>>31);
  122. ix1 += ix1;
  123. q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
  124. r = 0x00200000; /* r = moving bit from right to left */
  125. while(r!=0) {
  126. t = s0+r;
  127. if(t<=ix0) {
  128. s0 = t+r;
  129. ix0 -= t;
  130. q += r;
  131. }
  132. ix0 += ix0 + ((ix1&sign)>>31);
  133. ix1 += ix1;
  134. r>>=1;
  135. }
  136. r = sign;
  137. while(r!=0) {
  138. t1 = s1+r;
  139. t = s0;
  140. if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
  141. s1 = t1+r;
  142. if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
  143. ix0 -= t;
  144. if (ix1 < t1) ix0 -= 1;
  145. ix1 -= t1;
  146. q1 += r;
  147. }
  148. ix0 += ix0 + ((ix1&sign)>>31);
  149. ix1 += ix1;
  150. r>>=1;
  151. }
  152. /* use floating add to find out rounding direction */
  153. if((ix0|ix1)!=0) {
  154. z = one-tiny; /* trigger inexact flag */
  155. if (z>=one) {
  156. z = one+tiny;
  157. if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
  158. else if (z>one) {
  159. if (q1==(u_int32_t)0xfffffffe) q+=1;
  160. q1+=2;
  161. } else
  162. q1 += (q1&1);
  163. }
  164. }
  165. ix0 = (q>>1)+0x3fe00000;
  166. ix1 = q1>>1;
  167. if ((q&1)==1) ix1 |= sign;
  168. ix0 += (m <<20);
  169. INSERT_WORDS(z,ix0,ix1);
  170. return z;
  171. }
  172. strong_alias(__ieee754_sqrt, sqrt)
  173. libm_hidden_def(sqrt)
  174. /*
  175. Other methods (use floating-point arithmetic)
  176. -------------
  177. (This is a copy of a drafted paper by Prof W. Kahan
  178. and K.C. Ng, written in May, 1986)
  179. Two algorithms are given here to implement sqrt(x)
  180. (IEEE double precision arithmetic) in software.
  181. Both supply sqrt(x) correctly rounded. The first algorithm (in
  182. Section A) uses newton iterations and involves four divisions.
  183. The second one uses reciproot iterations to avoid division, but
  184. requires more multiplications. Both algorithms need the ability
  185. to chop results of arithmetic operations instead of round them,
  186. and the INEXACT flag to indicate when an arithmetic operation
  187. is executed exactly with no roundoff error, all part of the
  188. standard (IEEE 754-1985). The ability to perform shift, add,
  189. subtract and logical AND operations upon 32-bit words is needed
  190. too, though not part of the standard.
  191. A. sqrt(x) by Newton Iteration
  192. (1) Initial approximation
  193. Let x0 and x1 be the leading and the trailing 32-bit words of
  194. a floating point number x (in IEEE double format) respectively
  195. 1 11 52 ...widths
  196. ------------------------------------------------------
  197. x: |s| e | f |
  198. ------------------------------------------------------
  199. msb lsb msb lsb ...order
  200. ------------------------ ------------------------
  201. x0: |s| e | f1 | x1: | f2 |
  202. ------------------------ ------------------------
  203. By performing shifts and subtracts on x0 and x1 (both regarded
  204. as integers), we obtain an 8-bit approximation of sqrt(x) as
  205. follows.
  206. k := (x0>>1) + 0x1ff80000;
  207. y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
  208. Here k is a 32-bit integer and T1[] is an integer array containing
  209. correction terms. Now magically the floating value of y (y's
  210. leading 32-bit word is y0, the value of its trailing word is 0)
  211. approximates sqrt(x) to almost 8-bit.
  212. Value of T1:
  213. static int T1[32]= {
  214. 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
  215. 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
  216. 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
  217. 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
  218. (2) Iterative refinement
  219. Apply Heron's rule three times to y, we have y approximates
  220. sqrt(x) to within 1 ulp (Unit in the Last Place):
  221. y := (y+x/y)/2 ... almost 17 sig. bits
  222. y := (y+x/y)/2 ... almost 35 sig. bits
  223. y := y-(y-x/y)/2 ... within 1 ulp
  224. Remark 1.
  225. Another way to improve y to within 1 ulp is:
  226. y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
  227. y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
  228. 2
  229. (x-y )*y
  230. y := y + 2* ---------- ...within 1 ulp
  231. 2
  232. 3y + x
  233. This formula has one division fewer than the one above; however,
  234. it requires more multiplications and additions. Also x must be
  235. scaled in advance to avoid spurious overflow in evaluating the
  236. expression 3y*y+x. Hence it is not recommended uless division
  237. is slow. If division is very slow, then one should use the
  238. reciproot algorithm given in section B.
  239. (3) Final adjustment
  240. By twiddling y's last bit it is possible to force y to be
  241. correctly rounded according to the prevailing rounding mode
  242. as follows. Let r and i be copies of the rounding mode and
  243. inexact flag before entering the square root program. Also we
  244. use the expression y+-ulp for the next representable floating
  245. numbers (up and down) of y. Note that y+-ulp = either fixed
  246. point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  247. mode.
  248. I := FALSE; ... reset INEXACT flag I
  249. R := RZ; ... set rounding mode to round-toward-zero
  250. z := x/y; ... chopped quotient, possibly inexact
  251. If(not I) then { ... if the quotient is exact
  252. if(z=y) {
  253. I := i; ... restore inexact flag
  254. R := r; ... restore rounded mode
  255. return sqrt(x):=y.
  256. } else {
  257. z := z - ulp; ... special rounding
  258. }
  259. }
  260. i := TRUE; ... sqrt(x) is inexact
  261. If (r=RN) then z=z+ulp ... rounded-to-nearest
  262. If (r=RP) then { ... round-toward-+inf
  263. y = y+ulp; z=z+ulp;
  264. }
  265. y := y+z; ... chopped sum
  266. y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
  267. I := i; ... restore inexact flag
  268. R := r; ... restore rounded mode
  269. return sqrt(x):=y.
  270. (4) Special cases
  271. Square root of +inf, +-0, or NaN is itself;
  272. Square root of a negative number is NaN with invalid signal.
  273. B. sqrt(x) by Reciproot Iteration
  274. (1) Initial approximation
  275. Let x0 and x1 be the leading and the trailing 32-bit words of
  276. a floating point number x (in IEEE double format) respectively
  277. (see section A). By performing shifs and subtracts on x0 and y0,
  278. we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
  279. k := 0x5fe80000 - (x0>>1);
  280. y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
  281. Here k is a 32-bit integer and T2[] is an integer array
  282. containing correction terms. Now magically the floating
  283. value of y (y's leading 32-bit word is y0, the value of
  284. its trailing word y1 is set to zero) approximates 1/sqrt(x)
  285. to almost 7.8-bit.
  286. Value of T2:
  287. static int T2[64]= {
  288. 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
  289. 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
  290. 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
  291. 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
  292. 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
  293. 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
  294. 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
  295. 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
  296. (2) Iterative refinement
  297. Apply Reciproot iteration three times to y and multiply the
  298. result by x to get an approximation z that matches sqrt(x)
  299. to about 1 ulp. To be exact, we will have
  300. -1ulp < sqrt(x)-z<1.0625ulp.
  301. ... set rounding mode to Round-to-nearest
  302. y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
  303. y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
  304. ... special arrangement for better accuracy
  305. z := x*y ... 29 bits to sqrt(x), with z*y<1
  306. z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
  307. Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
  308. (a) the term z*y in the final iteration is always less than 1;
  309. (b) the error in the final result is biased upward so that
  310. -1 ulp < sqrt(x) - z < 1.0625 ulp
  311. instead of |sqrt(x)-z|<1.03125ulp.
  312. (3) Final adjustment
  313. By twiddling y's last bit it is possible to force y to be
  314. correctly rounded according to the prevailing rounding mode
  315. as follows. Let r and i be copies of the rounding mode and
  316. inexact flag before entering the square root program. Also we
  317. use the expression y+-ulp for the next representable floating
  318. numbers (up and down) of y. Note that y+-ulp = either fixed
  319. point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  320. mode.
  321. R := RZ; ... set rounding mode to round-toward-zero
  322. switch(r) {
  323. case RN: ... round-to-nearest
  324. if(x<= z*(z-ulp)...chopped) z = z - ulp; else
  325. if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
  326. break;
  327. case RZ:case RM: ... round-to-zero or round-to--inf
  328. R:=RP; ... reset rounding mod to round-to-+inf
  329. if(x<z*z ... rounded up) z = z - ulp; else
  330. if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
  331. break;
  332. case RP: ... round-to-+inf
  333. if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
  334. if(x>z*z ...chopped) z = z+ulp;
  335. break;
  336. }
  337. Remark 3. The above comparisons can be done in fixed point. For
  338. example, to compare x and w=z*z chopped, it suffices to compare
  339. x1 and w1 (the trailing parts of x and w), regarding them as
  340. two's complement integers.
  341. ...Is z an exact square root?
  342. To determine whether z is an exact square root of x, let z1 be the
  343. trailing part of z, and also let x0 and x1 be the leading and
  344. trailing parts of x.
  345. If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
  346. I := 1; ... Raise Inexact flag: z is not exact
  347. else {
  348. j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
  349. k := z1 >> 26; ... get z's 25-th and 26-th
  350. fraction bits
  351. I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
  352. }
  353. R:= r ... restore rounded mode
  354. return sqrt(x):=z.
  355. If multiplication is cheaper then the foregoing red tape, the
  356. Inexact flag can be evaluated by
  357. I := i;
  358. I := (z*z!=x) or I.
  359. Note that z*z can overwrite I; this value must be sensed if it is
  360. True.
  361. Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
  362. zero.
  363. --------------------
  364. z1: | f2 |
  365. --------------------
  366. bit 31 bit 0
  367. Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
  368. or even of logb(x) have the following relations:
  369. -------------------------------------------------
  370. bit 27,26 of z1 bit 1,0 of x1 logb(x)
  371. -------------------------------------------------
  372. 00 00 odd and even
  373. 01 01 even
  374. 10 10 odd
  375. 10 00 even
  376. 11 01 even
  377. -------------------------------------------------
  378. (4) Special cases (see (4) of Section A).
  379. */