| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 | /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) * double x[],y[]; int e0,nx,prec; int ipio2[]; * * __kernel_rem_pio2 return the last three digits of N with *		y = x - N*pi/2 * so that |y| < pi/2. * * The method is to compute the integer (mod 8) and fraction parts of * (2/pi)*x without doing the full multiplication. In general we * skip the part of the product that are known to be a huge integer ( * more accurately, = 0 mod 8 ). Thus the number of operations are * independent of the exponent of the input. * * (2/pi) is represented by an array of 24-bit integers in ipio2[]. * * Input parameters: * 	x[]	The input value (must be positive) is broken into nx *		pieces of 24-bit integers in double precision format. *		x[i] will be the i-th 24 bit of x. The scaled exponent *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 *		match x's up to 24 bits. * *		Example of breaking a double positive z into x[0]+x[1]+x[2]: *			e0 = ilogb(z)-23 *			z  = scalbn(z,-e0) *		for i = 0,1,2 *			x[i] = floor(z) *			z    = (z-x[i])*2**24 * * *	y[]	ouput result in an array of double precision numbers. *		The dimension of y[] is: *			24-bit  precision	1 *			53-bit  precision	2 *			64-bit  precision	2 *			113-bit precision	3 *		The actual value is the sum of them. Thus for 113-bit *		precison, one may have to do something like: * *		long double t,w,r_head, r_tail; *		t = (long double)y[2] + (long double)y[1]; *		w = (long double)y[0]; *		r_head = t+w; *		r_tail = w - (r_head - t); * *	e0	The exponent of x[0] * *	nx	dimension of x[] * *  	prec	an integer indicating the precision: *			0	24  bits (single) *			1	53  bits (double) *			2	64  bits (extended) *			3	113 bits (quad) * *	ipio2[] *		integer array, contains the (24*i)-th to (24*i+23)-th *		bit of 2/pi after binary point. The corresponding *		floating value is * *			ipio2[i] * 2^(-24(i+1)). * * External function: *	double scalbn(), floor(); * * * Here is the description of some local variables: * * 	jk	jk+1 is the initial number of terms of ipio2[] needed *		in the computation. The recommended value is 2,3,4, *		6 for single, double, extended,and quad. * * 	jz	local integer variable indicating the number of *		terms of ipio2[] used. * *	jx	nx - 1 * *	jv	index for pointing to the suitable ipio2[] for the *		computation. In general, we want *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 *		is an integer. Thus *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv *		Hence jv = max(0,(e0-3)/24). * *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk. * * 	q[]	double array with integral value, representing the *		24-bits chunk of the product of x and 2/pi. * *	q0	the corresponding exponent of q[0]. Note that the *		exponent for q[i] would be q0-24*i. * *	PIo2[]	double precision array, obtained by cutting pi/2 *		into 24 bits chunks. * *	f[]	ipio2[] in floating point * *	iq[]	integer array by breaking up q[] in 24-bits chunk. * *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk] * *	ih	integer. If >0 it indicates q[] is >= 0.5, hence *		it also indicates the *sign* of the result. * *//* * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */#include "math.h"#include "math_private.h"static const int init_jk[] = {2,3,4,6}; /* initial value for jk */static const double PIo2[] = {  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */};static const doublezero   = 0.0,one    = 1.0,two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2){	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;	double z,fw,f[20],fq[20],q[20];    /* initialize jk*/	jk = init_jk[prec];	jp = jk;    /* determine jx,jv,q0, note that 3>q0 */	jx =  nx-1;	jv = (e0-3)/24; if(jv<0) jv=0;	q0 =  e0-24*(jv+1);    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */	j = jv-jx; m = jx+jk;	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];    /* compute q[0],q[1],...q[jk] */	for (i=0;i<=jk;i++) {	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];	    q[i] = fw;	}	jz = jk;recompute:    /* distill q[] into iq[] reversingly */	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {	    fw    =  (double)((int32_t)(twon24* z));	    iq[i] =  (int32_t)(z-two24*fw);	    z     =  q[j-1]+fw;	}    /* compute n */	z  = scalbn(z,q0);		/* actual value of z */	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */	n  = (int32_t) z;	z -= (double)n;	ih = 0;	if(q0>0) {	/* need iq[jz-1] to determine n */	    i  = (iq[jz-1]>>(24-q0)); n += i;	    iq[jz-1] -= i<<(24-q0);	    ih = iq[jz-1]>>(23-q0);	}	else if(q0==0) ih = iq[jz-1]>>23;	else if(z>=0.5) ih=2;	if(ih>0) {	/* q > 0.5 */	    n += 1; carry = 0;	    for(i=0;i<jz ;i++) {	/* compute 1-q */		j = iq[i];		if(carry==0) {		    if(j!=0) {			carry = 1; iq[i] = 0x1000000- j;		    }		} else  iq[i] = 0xffffff - j;	    }	    if(q0>0) {		/* rare case: chance is 1 in 12 */	        switch(q0) {	        case 1:	    	   iq[jz-1] &= 0x7fffff; break;	    	case 2:	    	   iq[jz-1] &= 0x3fffff; break;	        }	    }	    if(ih==2) {		z = one - z;		if(carry!=0) z -= scalbn(one,q0);	    }	}    /* check if recomputation is needed */	if(z==zero) {	    j = 0;	    for (i=jz-1;i>=jk;i--) j |= iq[i];	    if(j==0) { /* need recomputation */		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */		    f[jx+i] = (double) ipio2[jv+i];		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];		    q[i] = fw;		}		jz += k;		goto recompute;	    }	}    /* chop off zero terms */	if(z==0.0) {	    jz -= 1; q0 -= 24;	    while(iq[jz]==0) { jz--; q0-=24;}	} else { /* break z into 24-bit if necessary */	    z = scalbn(z,-q0);	    if(z>=two24) {		fw = (double)((int32_t)(twon24*z));		iq[jz] = (int32_t)(z-two24*fw);		jz += 1; q0 += 24;		iq[jz] = (int32_t) fw;	    } else iq[jz] = (int32_t) z ;	}    /* convert integer "bit" chunk to floating-point value */	fw = scalbn(one,q0);	for(i=jz;i>=0;i--) {	    q[i] = fw*(double)iq[i]; fw*=twon24;	}    /* compute PIo2[0,...,jp]*q[jz,...,0] */	for(i=jz;i>=0;i--) {	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];	    fq[jz-i] = fw;	}    /* compress fq[] into y[] */	switch(prec) {	    case 0:		fw = 0.0;		for (i=jz;i>=0;i--) fw += fq[i];		y[0] = (ih==0)? fw: -fw;		break;	    case 1:	    case 2:		fw = 0.0;		for (i=jz;i>=0;i--) fw += fq[i];		y[0] = (ih==0)? fw: -fw;		fw = fq[0]-fw;		for (i=1;i<=jz;i++) fw += fq[i];		y[1] = (ih==0)? fw: -fw;		break;	    case 3:	/* painful */		for (i=jz;i>0;i--) {		    fw      = fq[i-1]+fq[i];		    fq[i]  += fq[i-1]-fw;		    fq[i-1] = fw;		}		for (i=jz;i>1;i--) {		    fw      = fq[i-1]+fq[i];		    fq[i]  += fq[i-1]-fw;		    fq[i-1] = fw;		}		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];		if(ih==0) {		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;		} else {		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;		}	}	return n&7;}
 |