| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 | /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */#ifndef _MATH_PRIVATE_H_#define _MATH_PRIVATE_H_#include <endian.h>#include <sys/types.h>/* The original fdlibm code used statements like:	n0 = ((*(int*)&one)>>29)^1;		* index of high word *	ix0 = *(n0+(int*)&x);			* high word of x *	ix1 = *((1-n0)+(int*)&x);		* low word of x *   to dig two 32 bit words out of the 64 bit IEEE floating point   value.  That is non-ANSI, and, moreover, the gcc instruction   scheduler gets it wrong.  We instead use the following macros.   Unlike the original code, we determine the endianness at compile   time, not at run time; I don't see much benefit to selecting   endianness at run time.  *//* A union which permits us to convert between a double and two 32 bit   ints.  *//* * Math on arm is special (read: stupid): * For FPA, float words are always big-endian. * For VFP, float words follow the memory system mode. * For Maverick, float words are always little-endian. */#if !defined(__MAVERICK__) && ((__BYTE_ORDER == __BIG_ENDIAN) || \    (!defined(__VFP_FP__) && (defined(__arm__) || defined(__thumb__))))typedef union{  double value;  struct  {    u_int32_t msw;    u_int32_t lsw;  } parts;} ieee_double_shape_type;#elsetypedef union{  double value;  struct  {    u_int32_t lsw;    u_int32_t msw;  } parts;} ieee_double_shape_type;#endif/* Get two 32 bit ints from a double.  */#define EXTRACT_WORDS(ix0,ix1,d)				\do {								\  ieee_double_shape_type ew_u;					\  ew_u.value = (d);						\  (ix0) = ew_u.parts.msw;					\  (ix1) = ew_u.parts.lsw;					\} while (0)/* Get the more significant 32 bit int from a double.  */#define GET_HIGH_WORD(i,d)					\do {								\  ieee_double_shape_type gh_u;					\  gh_u.value = (d);						\  (i) = gh_u.parts.msw;						\} while (0)/* Get the less significant 32 bit int from a double.  */#define GET_LOW_WORD(i,d)					\do {								\  ieee_double_shape_type gl_u;					\  gl_u.value = (d);						\  (i) = gl_u.parts.lsw;						\} while (0)/* Set a double from two 32 bit ints.  */#define INSERT_WORDS(d,ix0,ix1)					\do {								\  ieee_double_shape_type iw_u;					\  iw_u.parts.msw = (ix0);					\  iw_u.parts.lsw = (ix1);					\  (d) = iw_u.value;						\} while (0)/* Set the more significant 32 bits of a double from an int.  */#define SET_HIGH_WORD(d,v)					\do {								\  ieee_double_shape_type sh_u;					\  sh_u.value = (d);						\  sh_u.parts.msw = (v);						\  (d) = sh_u.value;						\} while (0)/* Set the less significant 32 bits of a double from an int.  */#define SET_LOW_WORD(d,v)					\do {								\  ieee_double_shape_type sl_u;					\  sl_u.value = (d);						\  sl_u.parts.lsw = (v);						\  (d) = sl_u.value;						\} while (0)/* A union which permits us to convert between a float and a 32 bit   int.  */typedef union{  float value;  u_int32_t word;} ieee_float_shape_type;/* Get a 32 bit int from a float.  */#define GET_FLOAT_WORD(i,d)					\do {								\  ieee_float_shape_type gf_u;					\  gf_u.value = (d);						\  (i) = gf_u.word;						\} while (0)/* Set a float from a 32 bit int.  */#define SET_FLOAT_WORD(d,i)					\do {								\  ieee_float_shape_type sf_u;					\  sf_u.word = (i);						\  (d) = sf_u.value;						\} while (0)/* ieee style elementary functions */extern double __ieee754_sqrt (double) attribute_hidden;extern double __ieee754_acos (double) attribute_hidden;extern double __ieee754_acosh (double) attribute_hidden;extern double __ieee754_log (double) attribute_hidden;extern double __ieee754_log2 (double) attribute_hidden;extern double __ieee754_atanh (double) attribute_hidden;extern double __ieee754_asin (double) attribute_hidden;extern double __ieee754_atan2 (double,double) attribute_hidden;extern double __ieee754_exp (double) attribute_hidden;extern double __ieee754_exp10 (double) attribute_hidden;extern double __ieee754_cosh (double) attribute_hidden;extern double __ieee754_fmod (double,double) attribute_hidden;extern double __ieee754_pow (double,double) attribute_hidden;extern double __ieee754_lgamma_r (double,int *) attribute_hidden;/*extern double __ieee754_gamma_r (double,int *) attribute_hidden;*/extern double __ieee754_lgamma (double) attribute_hidden;/*extern double __ieee754_gamma (double) attribute_hidden;*/extern double __ieee754_log10 (double) attribute_hidden;extern double __ieee754_sinh (double) attribute_hidden;extern double __ieee754_hypot (double,double) attribute_hidden;extern double __ieee754_j0 (double) attribute_hidden;extern double __ieee754_j1 (double) attribute_hidden;extern double __ieee754_y0 (double) attribute_hidden;extern double __ieee754_y1 (double) attribute_hidden;extern double __ieee754_jn (int,double) attribute_hidden;extern double __ieee754_yn (int,double) attribute_hidden;extern double __ieee754_remainder (double,double) attribute_hidden;extern int    __ieee754_rem_pio2 (double,double*) attribute_hidden;extern double __ieee754_scalb (double,double) attribute_hidden;/* fdlibm kernel function */extern double __kernel_sin (double,double,int) attribute_hidden;extern double __kernel_cos (double,double) attribute_hidden;extern double __kernel_tan (double,double,int) attribute_hidden;extern int    __kernel_rem_pio2 (double*,double*,int,int,int,const int*) attribute_hidden;extern double __kernel_standard(double x, double y, int type) attribute_hidden;extern float  __kernel_standard_f (float, float, int) attribute_hidden;#ifndef __NO_LONG_DOUBLE_MATHextern long double __kernel_standard_l (long double, long double, int) attribute_hidden;#endif/* wrappers functions for internal use */extern float __lgammaf_r (float, int*);extern double __lgamma_r (double, int*);extern long double __lgammal_r(long double, int*);extern double __ieee754_tgamma(double);/* * math_opt_barrier(x): safely load x, even if it was manipulated * by non-floationg point operations. This macro returns the value of x. * This ensures compiler does not (ab)use its knowledge about x value * and don't optimize future operations. Example: * float x; * SET_FLOAT_WORD(x, 0x80000001); // sets a bit pattern * y = math_opt_barrier(x); // "compiler, do not cheat!" * y = y * y; // compiler can't optimize, must use real multiply insn * * math_force_eval(x): force expression x to be evaluated. * Useful if otherwise compiler may eliminate the expression * as unused. This macro returns no value. * Example: "void fn(float f) { f = f * f; }" *   versus "void fn(float f) { f = f * f; math_force_eval(f); }" * * Currently, math_force_eval(x) stores x into * a floating point register or memory *of the appropriate size*. * There is no guarantee this will not change. */#if defined(__i386__)#define math_opt_barrier(x) ({ \	__typeof(x) __x = (x); \	/* "t": load x into top-of-stack fpreg */ \	__asm__ ("" : "=t" (__x) : "0" (__x)); \	__x; \})#define math_force_eval(x) do {	\	__typeof(x) __x = (x); \	if (sizeof(__x) <= sizeof(double)) \		/* "m": store x into a memory location */ \		__asm__ __volatile__ ("" : : "m" (__x)); \	else /* long double */ \		/* "f": load x into (any) fpreg */ \		__asm__ __volatile__ ("" : : "f" (__x)); \} while (0)#endif#if defined(__x86_64__)#define math_opt_barrier(x) ({ \	__typeof(x) __x = (x); \	if (sizeof(__x) <= sizeof(double)) \		/* "x": load into XMM SSE register */ \		__asm__ ("" : "=x" (__x) : "0" (__x)); \	else /* long double */ \		/* "t": load x into top-of-stack fpreg */ \		__asm__ ("" : "=t" (__x) : "0" (__x)); \	__x; \})#define math_force_eval(x) do { \	__typeof(x) __x = (x); \	if (sizeof(__x) <= sizeof(double)) \		/* "x": load into XMM SSE register */ \		__asm__ __volatile__ ("" : : "x" (__x)); \	else /* long double */ \		/* "f": load x into (any) fpreg */ \		__asm__ __volatile__ ("" : : "f" (__x)); \} while (0)#endif/* Default implementations force store to a memory location */#ifndef math_opt_barrier#define math_opt_barrier(x) ({ __typeof(x) __x = (x); __asm__ ("" : "+m" (__x)); __x; })#endif#ifndef math_force_eval#define math_force_eval(x)  do { __typeof(x) __x = (x); __asm__ __volatile__ ("" : : "m" (__x)); } while (0)#endif#endif /* _MATH_PRIVATE_H_ */
 |