123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- /* sinl.c
- *
- * Circular sine, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, sinl();
- *
- * y = sinl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by the Cody
- * and Waite polynomial form
- * x + x**3 P(x**2) .
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - .5 x**2 + x**4 Q(x**2) .
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-5.5e11 200,000 1.2e-19 2.9e-20
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 2**39 0.0
- *
- * Loss of precision occurs for x > 2**39 = 5.49755813888e11.
- * The routine as implemented flags a TLOSS error for
- * x > 2**39 and returns 0.0.
- */
- /* cosl.c
- *
- * Circular cosine, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, cosl();
- *
- * y = cosl( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - .5 x**2 + x**4 Q(x**2) .
- * Between pi/4 and pi/2 the sine is represented by the Cody
- * and Waite polynomial form
- * x + x**3 P(x**2) .
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-5.5e11 50000 1.2e-19 2.9e-20
- */
- /* sin.c */
- /*
- Cephes Math Library Release 2.7: May, 1998
- Copyright 1985, 1990, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static long double sincof[7] = {
- -7.5785404094842805756289E-13L,
- 1.6058363167320443249231E-10L,
- -2.5052104881870868784055E-8L,
- 2.7557319214064922217861E-6L,
- -1.9841269841254799668344E-4L,
- 8.3333333333333225058715E-3L,
- -1.6666666666666666640255E-1L,
- };
- static long double coscof[7] = {
- 4.7377507964246204691685E-14L,
- -1.1470284843425359765671E-11L,
- 2.0876754287081521758361E-9L,
- -2.7557319214999787979814E-7L,
- 2.4801587301570552304991E-5L,
- -1.3888888888888872993737E-3L,
- 4.1666666666666666609054E-2L,
- };
- static long double DP1 = 7.853981554508209228515625E-1L;
- static long double DP2 = 7.946627356147928367136046290398E-9L;
- static long double DP3 = 3.061616997868382943065164830688E-17L;
- #endif
- #ifdef IBMPC
- static short sincof[] = {
- 0x4e27,0xe1d6,0x2389,0xd551,0xbfd6, XPD
- 0x64d7,0xe706,0x4623,0xb090,0x3fde, XPD
- 0x01b1,0xbf34,0x2946,0xd732,0xbfe5, XPD
- 0xc8f7,0x9845,0x1d29,0xb8ef,0x3fec, XPD
- 0x6514,0x0c53,0x00d0,0xd00d,0xbff2, XPD
- 0x569a,0x8888,0x8888,0x8888,0x3ff8, XPD
- 0xaa97,0xaaaa,0xaaaa,0xaaaa,0xbffc, XPD
- };
- static short coscof[] = {
- 0x7436,0x6f99,0x8c3a,0xd55e,0x3fd2, XPD
- 0x2f37,0x58f4,0x920f,0xc9c9,0xbfda, XPD
- 0x5350,0x659e,0xc648,0x8f76,0x3fe2, XPD
- 0x4d2b,0xf5c6,0x7dba,0x93f2,0xbfe9, XPD
- 0x53ed,0x0c66,0x00d0,0xd00d,0x3fef, XPD
- 0x7b67,0x0b60,0x60b6,0xb60b,0xbff5, XPD
- 0xaa9a,0xaaaa,0xaaaa,0xaaaa,0x3ffa, XPD
- };
- static short P1[] = {0x0000,0x0000,0xda80,0xc90f,0x3ffe, XPD};
- static short P2[] = {0x0000,0x0000,0xa300,0x8885,0x3fe4, XPD};
- static short P3[] = {0x3707,0xa2e0,0x3198,0x8d31,0x3fc8, XPD};
- #define DP1 *(long double *)P1
- #define DP2 *(long double *)P2
- #define DP3 *(long double *)P3
- #endif
- #ifdef MIEEE
- static long sincof[] = {
- 0xbfd60000,0xd5512389,0xe1d64e27,
- 0x3fde0000,0xb0904623,0xe70664d7,
- 0xbfe50000,0xd7322946,0xbf3401b1,
- 0x3fec0000,0xb8ef1d29,0x9845c8f7,
- 0xbff20000,0xd00d00d0,0x0c536514,
- 0x3ff80000,0x88888888,0x8888569a,
- 0xbffc0000,0xaaaaaaaa,0xaaaaaa97,
- };
- static long coscof[] = {
- 0x3fd20000,0xd55e8c3a,0x6f997436,
- 0xbfda0000,0xc9c9920f,0x58f42f37,
- 0x3fe20000,0x8f76c648,0x659e5350,
- 0xbfe90000,0x93f27dba,0xf5c64d2b,
- 0x3fef0000,0xd00d00d0,0x0c6653ed,
- 0xbff50000,0xb60b60b6,0x0b607b67,
- 0x3ffa0000,0xaaaaaaaa,0xaaaaaa9a,
- };
- static long P1[] = {0x3ffe0000,0xc90fda80,0x00000000};
- static long P2[] = {0x3fe40000,0x8885a300,0x00000000};
- static long P3[] = {0x3fc80000,0x8d313198,0xa2e03707};
- #define DP1 *(long double *)P1
- #define DP2 *(long double *)P2
- #define DP3 *(long double *)P3
- #endif
- static long double lossth = 5.49755813888e11L; /* 2^39 */
- extern long double PIO4L;
- #ifdef ANSIPROT
- extern long double polevll ( long double, void *, int );
- extern long double floorl ( long double );
- extern long double ldexpl ( long double, int );
- extern int isnanl ( long double );
- extern int isfinitel ( long double );
- #else
- long double polevll(), floorl(), ldexpl(), isnanl(), isfinitel();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #endif
- #ifdef NANS
- extern long double NANL;
- #endif
- long double sinl(x)
- long double x;
- {
- long double y, z, zz;
- int j, sign;
- #ifdef NANS
- if( isnanl(x) )
- return(x);
- #endif
- #ifdef MINUSZERO
- if( x == 0.0L )
- return(x);
- #endif
- #ifdef NANS
- if( !isfinitel(x) )
- {
- mtherr( "sinl", DOMAIN );
- #ifdef NANS
- return(NANL);
- #else
- return(0.0L);
- #endif
- }
- #endif
- /* make argument positive but save the sign */
- sign = 1;
- if( x < 0 )
- {
- x = -x;
- sign = -1;
- }
- if( x > lossth )
- {
- mtherr( "sinl", TLOSS );
- return(0.0L);
- }
- y = floorl( x/PIO4L ); /* integer part of x/PIO4 */
- /* strip high bits of integer part to prevent integer overflow */
- z = ldexpl( y, -4 );
- z = floorl(z); /* integer part of y/8 */
- z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */
- j = z; /* convert to integer for tests on the phase angle */
- /* map zeros to origin */
- if( j & 1 )
- {
- j += 1;
- y += 1.0L;
- }
- j = j & 07; /* octant modulo 360 degrees */
- /* reflect in x axis */
- if( j > 3)
- {
- sign = -sign;
- j -= 4;
- }
- /* Extended precision modular arithmetic */
- z = ((x - y * DP1) - y * DP2) - y * DP3;
- zz = z * z;
- if( (j==1) || (j==2) )
- {
- y = 1.0L - ldexpl(zz,-1) + zz * zz * polevll( zz, coscof, 6 );
- }
- else
- {
- y = z + z * (zz * polevll( zz, sincof, 6 ));
- }
- if(sign < 0)
- y = -y;
- return(y);
- }
- long double cosl(x)
- long double x;
- {
- long double y, z, zz;
- long i;
- int j, sign;
- #ifdef NANS
- if( isnanl(x) )
- return(x);
- #endif
- #ifdef INFINITIES
- if( !isfinitel(x) )
- {
- mtherr( "cosl", DOMAIN );
- #ifdef NANS
- return(NANL);
- #else
- return(0.0L);
- #endif
- }
- #endif
- /* make argument positive */
- sign = 1;
- if( x < 0 )
- x = -x;
- if( x > lossth )
- {
- mtherr( "cosl", TLOSS );
- return(0.0L);
- }
- y = floorl( x/PIO4L );
- z = ldexpl( y, -4 );
- z = floorl(z); /* integer part of y/8 */
- z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */
- /* integer and fractional part modulo one octant */
- i = z;
- if( i & 1 ) /* map zeros to origin */
- {
- i += 1;
- y += 1.0L;
- }
- j = i & 07;
- if( j > 3)
- {
- j -=4;
- sign = -sign;
- }
- if( j > 1 )
- sign = -sign;
- /* Extended precision modular arithmetic */
- z = ((x - y * DP1) - y * DP2) - y * DP3;
- zz = z * z;
- if( (j==1) || (j==2) )
- {
- y = z + z * (zz * polevll( zz, sincof, 6 ));
- }
- else
- {
- y = 1.0L - ldexpl(zz,-1) + zz * zz * polevll( zz, coscof, 6 );
- }
- if(sign < 0)
- y = -y;
- return(y);
- }
|