des.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813
  1. /*
  2. * FreeSec: libcrypt for NetBSD
  3. *
  4. * Copyright (c) 1994 David Burren
  5. * All rights reserved.
  6. *
  7. * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
  8. * this file should now *only* export crypt(), in order to make
  9. * binaries of libcrypt exportable from the USA
  10. *
  11. * Adapted for FreeBSD-4.0 by Mark R V Murray
  12. * this file should now *only* export crypt_des(), in order to make
  13. * a module that can be optionally included in libcrypt.
  14. *
  15. * Redistribution and use in source and binary forms, with or without
  16. * modification, are permitted provided that the following conditions
  17. * are met:
  18. * 1. Redistributions of source code must retain the above copyright
  19. * notice, this list of conditions and the following disclaimer.
  20. * 2. Redistributions in binary form must reproduce the above copyright
  21. * notice, this list of conditions and the following disclaimer in the
  22. * documentation and/or other materials provided with the distribution.
  23. * 3. Neither the name of the author nor the names of other contributors
  24. * may be used to endorse or promote products derived from this software
  25. * without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  28. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  29. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  30. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  31. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  32. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  33. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  34. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  35. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  36. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  37. * SUCH DAMAGE.
  38. *
  39. * This is an original implementation of the DES and the crypt(3) interfaces
  40. * by David Burren <davidb@werj.com.au>.
  41. *
  42. * An excellent reference on the underlying algorithm (and related
  43. * algorithms) is:
  44. *
  45. * B. Schneier, Applied Cryptography: protocols, algorithms,
  46. * and source code in C, John Wiley & Sons, 1994.
  47. *
  48. * Note that in that book's description of DES the lookups for the initial,
  49. * pbox, and final permutations are inverted (this has been brought to the
  50. * attention of the author). A list of errata for this book has been
  51. * posted to the sci.crypt newsgroup by the author and is available for FTP.
  52. *
  53. * ARCHITECTURE ASSUMPTIONS:
  54. * It is assumed that the 8-byte arrays passed by reference can be
  55. * addressed as arrays of u_int32_t's (ie. the CPU is not picky about
  56. * alignment).
  57. */
  58. #define __FORCE_GLIBC
  59. #include <sys/cdefs.h>
  60. #include <sys/types.h>
  61. #include <sys/param.h>
  62. #include <netinet/in.h>
  63. #include <pwd.h>
  64. #include <string.h>
  65. #include <crypt.h>
  66. #include <stdlib.h>
  67. #include <malloc.h>
  68. #include "libcrypt.h"
  69. /* We allocate memory for tables on first use, instead of using
  70. * static buffers - ~70k of statics is not NOMMU-friendly. */
  71. struct crypt_data {
  72. u_int32_t saltbits; /* referenced 5 times */
  73. u_int32_t old_salt; /* 3 times */
  74. u_int32_t old_rawkey0, old_rawkey1; /* 3 times each */
  75. u_char un_pbox[32]; /* 2 times */
  76. u_char inv_comp_perm[56]; /* 3 times */
  77. u_char inv_key_perm[64]; /* 3 times */
  78. char des_initialised; /* 2 times */
  79. char __des_crypt_out[21]; /* private buffer for __des_crypt() */
  80. u_int32_t en_keysl[16], en_keysr[16]; /* 2 times each */
  81. u_int32_t de_keysl[16], de_keysr[16]; /* 2 times each */
  82. u_int32_t ip_maskl[8][256], ip_maskr[8][256]; /* 9 times each */
  83. u_int32_t fp_maskl[8][256], fp_maskr[8][256]; /* 9 times each */
  84. u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; /* 9 times */
  85. u_int32_t comp_maskl[8][128], comp_maskr[8][128]; /* 9 times each */
  86. };
  87. static struct crypt_data *__uc_des_data;
  88. #define D (*__uc_des_data)
  89. #define saltbits (D.saltbits )
  90. #define old_salt (D.old_salt )
  91. #define old_rawkey0 (D.old_rawkey0 )
  92. #define old_rawkey1 (D.old_rawkey1 )
  93. #define un_pbox (D.un_pbox )
  94. #define inv_comp_perm (D.inv_comp_perm )
  95. #define inv_key_perm (D.inv_key_perm )
  96. #define des_initialised (D.des_initialised)
  97. #define __des_crypt_out (D.__des_crypt_out)
  98. #define en_keysl (D.en_keysl )
  99. #define en_keysr (D.en_keysr )
  100. #define de_keysl (D.de_keysl )
  101. #define de_keysr (D.de_keysr )
  102. #define ip_maskl (D.ip_maskl )
  103. #define ip_maskr (D.ip_maskr )
  104. #define fp_maskl (D.fp_maskl )
  105. #define fp_maskr (D.fp_maskr )
  106. #define key_perm_maskl (D.key_perm_maskl )
  107. #define key_perm_maskr (D.key_perm_maskr )
  108. #define comp_maskl (D.comp_maskl )
  109. #define comp_maskr (D.comp_maskr )
  110. /* Static stuff that stays resident and doesn't change after
  111. * being initialized, and therefore doesn't need to be made
  112. * reentrant. */
  113. struct const_crypt_data {
  114. u_char init_perm[64], final_perm[64]; /* referenced 2 times each */
  115. u_char m_sbox[4][4096]; /* 5 times */
  116. u_int32_t psbox[4][256]; /* 5 times */
  117. };
  118. static struct const_crypt_data *__uc_des_C_ptr;
  119. #define C (*__uc_des_C_ptr)
  120. #define init_perm (C.init_perm )
  121. #define final_perm (C.final_perm)
  122. #define m_sbox (C.m_sbox )
  123. #define psbox (C.psbox )
  124. /* A pile of data */
  125. static const u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  126. static const u_char IP[64] = {
  127. 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
  128. 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
  129. 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
  130. 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
  131. };
  132. static const u_char key_perm[56] = {
  133. 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
  134. 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
  135. 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
  136. 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
  137. };
  138. static const u_char key_shifts[16] = {
  139. 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
  140. };
  141. static const u_char comp_perm[48] = {
  142. 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
  143. 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
  144. 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
  145. 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
  146. };
  147. /*
  148. * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
  149. */
  150. static const u_char sbox[8][64] = {
  151. {
  152. 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
  153. 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
  154. 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
  155. 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
  156. },
  157. {
  158. 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
  159. 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
  160. 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
  161. 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
  162. },
  163. {
  164. 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
  165. 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
  166. 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
  167. 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
  168. },
  169. {
  170. 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
  171. 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
  172. 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
  173. 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
  174. },
  175. {
  176. 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
  177. 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
  178. 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
  179. 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
  180. },
  181. {
  182. 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
  183. 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
  184. 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
  185. 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
  186. },
  187. {
  188. 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
  189. 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
  190. 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
  191. 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
  192. },
  193. {
  194. 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
  195. 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
  196. 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
  197. 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
  198. }
  199. };
  200. static const u_char pbox[32] = {
  201. 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
  202. 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
  203. };
  204. static const u_int32_t bits32[32] =
  205. {
  206. 0x80000000, 0x40000000, 0x20000000, 0x10000000,
  207. 0x08000000, 0x04000000, 0x02000000, 0x01000000,
  208. 0x00800000, 0x00400000, 0x00200000, 0x00100000,
  209. 0x00080000, 0x00040000, 0x00020000, 0x00010000,
  210. 0x00008000, 0x00004000, 0x00002000, 0x00001000,
  211. 0x00000800, 0x00000400, 0x00000200, 0x00000100,
  212. 0x00000080, 0x00000040, 0x00000020, 0x00000010,
  213. 0x00000008, 0x00000004, 0x00000002, 0x00000001
  214. };
  215. static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
  216. static int
  217. ascii_to_bin(char ch)
  218. {
  219. if (ch > 'z')
  220. return(0);
  221. if (ch >= 'a')
  222. return(ch - 'a' + 38);
  223. if (ch > 'Z')
  224. return(0);
  225. if (ch >= 'A')
  226. return(ch - 'A' + 12);
  227. if (ch > '9')
  228. return(0);
  229. if (ch >= '.')
  230. return(ch - '.');
  231. return(0);
  232. }
  233. static void
  234. des_init(void)
  235. {
  236. int i, j, b, k, inbit, obit;
  237. u_int32_t *p, *il, *ir, *fl, *fr;
  238. const u_int32_t *bits28, *bits24;
  239. u_char u_sbox[8][64];
  240. if (des_initialised)
  241. return;
  242. if (!__uc_des_C_ptr) {
  243. /* No need to zero it out, it is fully initialized below */
  244. __uc_des_C_ptr = __uc_malloc(sizeof(C));
  245. }
  246. old_rawkey0 = old_rawkey1 = 0L;
  247. saltbits = 0L;
  248. old_salt = 0L;
  249. bits24 = (bits28 = bits32 + 4) + 4;
  250. /*
  251. * Invert the S-boxes, reordering the input bits.
  252. */
  253. for (i = 0; i < 8; i++)
  254. for (j = 0; j < 64; j++) {
  255. b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
  256. u_sbox[i][j] = sbox[i][b];
  257. }
  258. /*
  259. * Convert the inverted S-boxes into 4 arrays of 8 bits.
  260. * Each will handle 12 bits of the S-box input.
  261. */
  262. for (b = 0; b < 4; b++)
  263. for (i = 0; i < 64; i++)
  264. for (j = 0; j < 64; j++)
  265. m_sbox[b][(i << 6) | j] =
  266. (u_char)((u_sbox[(b << 1)][i] << 4) |
  267. u_sbox[(b << 1) + 1][j]);
  268. /*
  269. * Set up the initial & final permutations into a useful form, and
  270. * initialise the inverted key permutation.
  271. */
  272. for (i = 0; i < 64; i++) {
  273. init_perm[final_perm[i] = IP[i] - 1] = (u_char)i;
  274. inv_key_perm[i] = 255;
  275. }
  276. /*
  277. * Invert the key permutation and initialise the inverted key
  278. * compression permutation.
  279. */
  280. for (i = 0; i < 56; i++) {
  281. inv_key_perm[key_perm[i] - 1] = (u_char)i;
  282. inv_comp_perm[i] = 255;
  283. }
  284. /*
  285. * Invert the key compression permutation.
  286. */
  287. for (i = 0; i < 48; i++) {
  288. inv_comp_perm[comp_perm[i] - 1] = (u_char)i;
  289. }
  290. /*
  291. * Set up the OR-mask arrays for the initial and final permutations,
  292. * and for the key initial and compression permutations.
  293. */
  294. for (k = 0; k < 8; k++) {
  295. for (i = 0; i < 256; i++) {
  296. *(il = &ip_maskl[k][i]) = 0L;
  297. *(ir = &ip_maskr[k][i]) = 0L;
  298. *(fl = &fp_maskl[k][i]) = 0L;
  299. *(fr = &fp_maskr[k][i]) = 0L;
  300. for (j = 0; j < 8; j++) {
  301. inbit = 8 * k + j;
  302. if (i & bits8[j]) {
  303. if ((obit = init_perm[inbit]) < 32)
  304. *il |= bits32[obit];
  305. else
  306. *ir |= bits32[obit-32];
  307. if ((obit = final_perm[inbit]) < 32)
  308. *fl |= bits32[obit];
  309. else
  310. *fr |= bits32[obit - 32];
  311. }
  312. }
  313. }
  314. for (i = 0; i < 128; i++) {
  315. *(il = &key_perm_maskl[k][i]) = 0L;
  316. *(ir = &key_perm_maskr[k][i]) = 0L;
  317. for (j = 0; j < 7; j++) {
  318. inbit = 8 * k + j;
  319. if (i & bits8[j + 1]) {
  320. if ((obit = inv_key_perm[inbit]) == 255)
  321. continue;
  322. if (obit < 28)
  323. *il |= bits28[obit];
  324. else
  325. *ir |= bits28[obit - 28];
  326. }
  327. }
  328. *(il = &comp_maskl[k][i]) = 0L;
  329. *(ir = &comp_maskr[k][i]) = 0L;
  330. for (j = 0; j < 7; j++) {
  331. inbit = 7 * k + j;
  332. if (i & bits8[j + 1]) {
  333. if ((obit=inv_comp_perm[inbit]) == 255)
  334. continue;
  335. if (obit < 24)
  336. *il |= bits24[obit];
  337. else
  338. *ir |= bits24[obit - 24];
  339. }
  340. }
  341. }
  342. }
  343. /*
  344. * Invert the P-box permutation, and convert into OR-masks for
  345. * handling the output of the S-box arrays setup above.
  346. */
  347. for (i = 0; i < 32; i++)
  348. un_pbox[pbox[i] - 1] = (u_char)i;
  349. for (b = 0; b < 4; b++)
  350. for (i = 0; i < 256; i++) {
  351. *(p = &psbox[b][i]) = 0L;
  352. for (j = 0; j < 8; j++) {
  353. if (i & bits8[j])
  354. *p |= bits32[un_pbox[8 * b + j]];
  355. }
  356. }
  357. des_initialised = 1;
  358. }
  359. static void
  360. setup_salt(u_int32_t salt)
  361. {
  362. u_int32_t obit, saltbit;
  363. int i;
  364. if (salt == old_salt)
  365. return;
  366. old_salt = salt;
  367. saltbits = 0L;
  368. saltbit = 1;
  369. obit = 0x800000;
  370. for (i = 0; i < 24; i++) {
  371. if (salt & saltbit)
  372. saltbits |= obit;
  373. saltbit <<= 1;
  374. obit >>= 1;
  375. }
  376. }
  377. static int
  378. des_setkey(const char *key)
  379. {
  380. u_int32_t k0, k1, rawkey0, rawkey1;
  381. int shifts, round;
  382. des_init();
  383. rawkey0 = ntohl(*(const u_int32_t *) key);
  384. rawkey1 = ntohl(*(const u_int32_t *) (key + 4));
  385. if ((rawkey0 | rawkey1)
  386. && rawkey0 == old_rawkey0
  387. && rawkey1 == old_rawkey1) {
  388. /*
  389. * Already setup for this key.
  390. * This optimisation fails on a zero key (which is weak and
  391. * has bad parity anyway) in order to simplify the starting
  392. * conditions.
  393. */
  394. return(0);
  395. }
  396. old_rawkey0 = rawkey0;
  397. old_rawkey1 = rawkey1;
  398. /*
  399. * Do key permutation and split into two 28-bit subkeys.
  400. */
  401. k0 = key_perm_maskl[0][rawkey0 >> 25]
  402. | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
  403. | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
  404. | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
  405. | key_perm_maskl[4][rawkey1 >> 25]
  406. | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
  407. | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
  408. | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
  409. k1 = key_perm_maskr[0][rawkey0 >> 25]
  410. | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
  411. | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
  412. | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
  413. | key_perm_maskr[4][rawkey1 >> 25]
  414. | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
  415. | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
  416. | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
  417. /*
  418. * Rotate subkeys and do compression permutation.
  419. */
  420. shifts = 0;
  421. for (round = 0; round < 16; round++) {
  422. u_int32_t t0, t1;
  423. shifts += key_shifts[round];
  424. t0 = (k0 << shifts) | (k0 >> (28 - shifts));
  425. t1 = (k1 << shifts) | (k1 >> (28 - shifts));
  426. de_keysl[15 - round] =
  427. en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
  428. | comp_maskl[1][(t0 >> 14) & 0x7f]
  429. | comp_maskl[2][(t0 >> 7) & 0x7f]
  430. | comp_maskl[3][t0 & 0x7f]
  431. | comp_maskl[4][(t1 >> 21) & 0x7f]
  432. | comp_maskl[5][(t1 >> 14) & 0x7f]
  433. | comp_maskl[6][(t1 >> 7) & 0x7f]
  434. | comp_maskl[7][t1 & 0x7f];
  435. de_keysr[15 - round] =
  436. en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
  437. | comp_maskr[1][(t0 >> 14) & 0x7f]
  438. | comp_maskr[2][(t0 >> 7) & 0x7f]
  439. | comp_maskr[3][t0 & 0x7f]
  440. | comp_maskr[4][(t1 >> 21) & 0x7f]
  441. | comp_maskr[5][(t1 >> 14) & 0x7f]
  442. | comp_maskr[6][(t1 >> 7) & 0x7f]
  443. | comp_maskr[7][t1 & 0x7f];
  444. }
  445. return(0);
  446. }
  447. static int
  448. do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count)
  449. {
  450. /*
  451. * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
  452. */
  453. u_int32_t l, r, *kl, *kr, *kl1, *kr1;
  454. u_int32_t f = f; /* silence gcc */
  455. u_int32_t r48l, r48r;
  456. int round;
  457. if (count == 0) {
  458. return(1);
  459. } else if (count > 0) {
  460. /*
  461. * Encrypting
  462. */
  463. kl1 = en_keysl;
  464. kr1 = en_keysr;
  465. } else {
  466. /*
  467. * Decrypting
  468. */
  469. count = -count;
  470. kl1 = de_keysl;
  471. kr1 = de_keysr;
  472. }
  473. /*
  474. * Do initial permutation (IP).
  475. */
  476. l = ip_maskl[0][l_in >> 24]
  477. | ip_maskl[1][(l_in >> 16) & 0xff]
  478. | ip_maskl[2][(l_in >> 8) & 0xff]
  479. | ip_maskl[3][l_in & 0xff]
  480. | ip_maskl[4][r_in >> 24]
  481. | ip_maskl[5][(r_in >> 16) & 0xff]
  482. | ip_maskl[6][(r_in >> 8) & 0xff]
  483. | ip_maskl[7][r_in & 0xff];
  484. r = ip_maskr[0][l_in >> 24]
  485. | ip_maskr[1][(l_in >> 16) & 0xff]
  486. | ip_maskr[2][(l_in >> 8) & 0xff]
  487. | ip_maskr[3][l_in & 0xff]
  488. | ip_maskr[4][r_in >> 24]
  489. | ip_maskr[5][(r_in >> 16) & 0xff]
  490. | ip_maskr[6][(r_in >> 8) & 0xff]
  491. | ip_maskr[7][r_in & 0xff];
  492. while (count--) {
  493. /*
  494. * Do each round.
  495. */
  496. kl = kl1;
  497. kr = kr1;
  498. round = 16;
  499. while (round--) {
  500. /*
  501. * Expand R to 48 bits (simulate the E-box).
  502. */
  503. r48l = ((r & 0x00000001) << 23)
  504. | ((r & 0xf8000000) >> 9)
  505. | ((r & 0x1f800000) >> 11)
  506. | ((r & 0x01f80000) >> 13)
  507. | ((r & 0x001f8000) >> 15);
  508. r48r = ((r & 0x0001f800) << 7)
  509. | ((r & 0x00001f80) << 5)
  510. | ((r & 0x000001f8) << 3)
  511. | ((r & 0x0000001f) << 1)
  512. | ((r & 0x80000000) >> 31);
  513. /*
  514. * Do salting for crypt() and friends, and
  515. * XOR with the permuted key.
  516. */
  517. f = (r48l ^ r48r) & saltbits;
  518. r48l ^= f ^ *kl++;
  519. r48r ^= f ^ *kr++;
  520. /*
  521. * Do sbox lookups (which shrink it back to 32 bits)
  522. * and do the pbox permutation at the same time.
  523. */
  524. f = psbox[0][m_sbox[0][r48l >> 12]]
  525. | psbox[1][m_sbox[1][r48l & 0xfff]]
  526. | psbox[2][m_sbox[2][r48r >> 12]]
  527. | psbox[3][m_sbox[3][r48r & 0xfff]];
  528. /*
  529. * Now that we've permuted things, complete f().
  530. */
  531. f ^= l;
  532. l = r;
  533. r = f;
  534. }
  535. r = l;
  536. l = f;
  537. }
  538. /*
  539. * Do final permutation (inverse of IP).
  540. */
  541. *l_out = fp_maskl[0][l >> 24]
  542. | fp_maskl[1][(l >> 16) & 0xff]
  543. | fp_maskl[2][(l >> 8) & 0xff]
  544. | fp_maskl[3][l & 0xff]
  545. | fp_maskl[4][r >> 24]
  546. | fp_maskl[5][(r >> 16) & 0xff]
  547. | fp_maskl[6][(r >> 8) & 0xff]
  548. | fp_maskl[7][r & 0xff];
  549. *r_out = fp_maskr[0][l >> 24]
  550. | fp_maskr[1][(l >> 16) & 0xff]
  551. | fp_maskr[2][(l >> 8) & 0xff]
  552. | fp_maskr[3][l & 0xff]
  553. | fp_maskr[4][r >> 24]
  554. | fp_maskr[5][(r >> 16) & 0xff]
  555. | fp_maskr[6][(r >> 8) & 0xff]
  556. | fp_maskr[7][r & 0xff];
  557. return(0);
  558. }
  559. #if 0
  560. static int
  561. des_cipher(const char *in, char *out, u_int32_t salt, int count)
  562. {
  563. u_int32_t l_out, r_out, rawl, rawr;
  564. int retval;
  565. union {
  566. u_int32_t *ui32;
  567. const char *c;
  568. } trans;
  569. des_init();
  570. setup_salt(salt);
  571. trans.c = in;
  572. rawl = ntohl(*trans.ui32++);
  573. rawr = ntohl(*trans.ui32);
  574. retval = do_des(rawl, rawr, &l_out, &r_out, count);
  575. trans.c = out;
  576. *trans.ui32++ = htonl(l_out);
  577. *trans.ui32 = htonl(r_out);
  578. return(retval);
  579. }
  580. #endif
  581. void
  582. setkey(const char *key)
  583. {
  584. int i, j;
  585. u_int32_t packed_keys[2];
  586. u_char *p;
  587. if (!__uc_des_data)
  588. __uc_des_data = memset(__uc_malloc(sizeof(D)), 0, sizeof(D));
  589. p = (u_char *) packed_keys;
  590. for (i = 0; i < 8; i++) {
  591. p[i] = 0;
  592. for (j = 0; j < 8; j++)
  593. if (*key++ & 1)
  594. p[i] |= bits8[j];
  595. }
  596. des_setkey((char *)p);
  597. }
  598. void
  599. encrypt(char *block, int flag)
  600. {
  601. u_int32_t io[2];
  602. u_char *p;
  603. int i, j;
  604. /* if user didn't call setkey() before and __uc_des_data
  605. * is NULL, it's user's own fault. */
  606. des_init();
  607. setup_salt(0L);
  608. p = (u_char*)block;
  609. for (i = 0; i < 2; i++) {
  610. io[i] = 0L;
  611. for (j = 0; j < 32; j++)
  612. if (*p++ & 1)
  613. io[i] |= bits32[j];
  614. }
  615. do_des(io[0], io[1], io, io + 1, flag ? -1 : 1);
  616. for (i = 0; i < 2; i++)
  617. for (j = 0; j < 32; j++)
  618. block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;
  619. }
  620. char *__des_crypt(const unsigned char *key, const unsigned char *setting)
  621. {
  622. u_int32_t count, salt, l, r0, r1, keybuf[2];
  623. u_char *p, *q;
  624. /* Used to have static char output[21] here, but since we already
  625. * allocate ~70k for des tables, we can carve out 21 bytes
  626. * from that memory instead */
  627. #define output __des_crypt_out
  628. if (!__uc_des_data) {
  629. /* If malloc returns NULL, we just segfault. Other ideas? */
  630. __uc_des_data = memset(__uc_malloc(sizeof(D)), 0, sizeof(D));
  631. }
  632. des_init();
  633. /*
  634. * Copy the key, shifting each character up by one bit
  635. * and padding with zeros.
  636. */
  637. q = (u_char *)keybuf;
  638. while (q - (u_char *)keybuf - 8) {
  639. *q++ = *key << 1;
  640. if (*(q - 1))
  641. key++;
  642. }
  643. if (des_setkey((char *)keybuf))
  644. return(NULL);
  645. #if 0
  646. if (*setting == _PASSWORD_EFMT1) {
  647. int i;
  648. /*
  649. * "new"-style:
  650. * setting - underscore, 4 bytes of count, 4 bytes of salt
  651. * key - unlimited characters
  652. */
  653. for (i = 1, count = 0L; i < 5; i++)
  654. count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
  655. for (i = 5, salt = 0L; i < 9; i++)
  656. salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
  657. while (*key) {
  658. /*
  659. * Encrypt the key with itself.
  660. */
  661. if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))
  662. return(NULL);
  663. /*
  664. * And XOR with the next 8 characters of the key.
  665. */
  666. q = (u_char *)keybuf;
  667. while (q - (u_char *)keybuf - 8 && *key)
  668. *q++ ^= *key++ << 1;
  669. if (des_setkey((char *)keybuf))
  670. return(NULL);
  671. }
  672. strncpy(output, setting, 9);
  673. /*
  674. * Double check that we weren't given a short setting.
  675. * If we were, the above code will probably have created
  676. * wierd values for count and salt, but we don't really care.
  677. * Just make sure the output string doesn't have an extra
  678. * NUL in it.
  679. */
  680. output[9] = '\0';
  681. p = (u_char *)output + strlen(output);
  682. } else
  683. #endif
  684. {
  685. /*
  686. * "old"-style:
  687. * setting - 2 bytes of salt
  688. * key - up to 8 characters
  689. */
  690. count = 25;
  691. salt = (ascii_to_bin(setting[1]) << 6)
  692. | ascii_to_bin(setting[0]);
  693. output[0] = setting[0];
  694. /*
  695. * If the encrypted password that the salt was extracted from
  696. * is only 1 character long, the salt will be corrupted. We
  697. * need to ensure that the output string doesn't have an extra
  698. * NUL in it!
  699. */
  700. output[1] = setting[1] ? setting[1] : output[0];
  701. p = (u_char *)output + 2;
  702. }
  703. setup_salt(salt);
  704. /*
  705. * Do it.
  706. */
  707. if (do_des(0L, 0L, &r0, &r1, (int)count))
  708. return(NULL);
  709. /*
  710. * Now encode the result...
  711. */
  712. l = (r0 >> 8);
  713. *p++ = ascii64[(l >> 18) & 0x3f];
  714. *p++ = ascii64[(l >> 12) & 0x3f];
  715. *p++ = ascii64[(l >> 6) & 0x3f];
  716. *p++ = ascii64[l & 0x3f];
  717. l = (r0 << 16) | ((r1 >> 16) & 0xffff);
  718. *p++ = ascii64[(l >> 18) & 0x3f];
  719. *p++ = ascii64[(l >> 12) & 0x3f];
  720. *p++ = ascii64[(l >> 6) & 0x3f];
  721. *p++ = ascii64[l & 0x3f];
  722. l = r1 << 2;
  723. *p++ = ascii64[(l >> 12) & 0x3f];
  724. *p++ = ascii64[(l >> 6) & 0x3f];
  725. *p++ = ascii64[l & 0x3f];
  726. *p = 0;
  727. return(output);
  728. }