elfinterp.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. /* Run an ELF binary on a linux system.
  2. Copyright (C) 1993, Eric Youngdale.
  3. This program is free software; you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation; either version 2, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program; if not, write to the Free Software
  13. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
  14. #ifndef VERBOSE_DLINKER
  15. #define VERBOSE_DLINKER
  16. #endif
  17. #ifdef VERBOSE_DLINKER
  18. static char * _dl_reltypes[] = {"R_386_NONE","R_386_32","R_386_PC32","R_386_GOT32",
  19. "R_386_PLT32","R_386_COPY","R_386_GLOB_DAT",
  20. "R_386_JMP_SLOT","R_386_RELATIVE","R_386_GOTOFF",
  21. "R_386_GOTPC","R_386_NUM"};
  22. #endif
  23. /* Program to load an ELF binary on a linux system, and run it.
  24. References to symbols in sharable libraries can be resolved by either
  25. an ELF sharable library or a linux style of shared library. */
  26. /* Disclaimer: I have never seen any AT&T source code for SVr4, nor have
  27. I ever taken any courses on internals. This program was developed using
  28. information available through the book "UNIX SYSTEM V RELEASE 4,
  29. Programmers guide: Ansi C and Programming Support Tools", which did
  30. a more than adequate job of explaining everything required to get this
  31. working. */
  32. #include <sys/types.h>
  33. #include <errno.h>
  34. #include <fcntl.h>
  35. #include <linux/elf.h>
  36. #include "hash.h"
  37. #include "linuxelf.h"
  38. #include "../string.h"
  39. #include "../syscall.h"
  40. #define SVR4_COMPATIBILITY
  41. extern char *_dl_progname;
  42. extern int _dl_linux_resolve(void);
  43. unsigned int _dl_linux_resolver(int dummy, int i)
  44. {
  45. unsigned int * sp;
  46. int reloc_entry;
  47. int reloc_type;
  48. struct elf32_rel * this_reloc;
  49. char * strtab;
  50. struct elf32_sym * symtab;
  51. struct elf32_rel * rel_addr;
  52. struct elf_resolve * tpnt;
  53. int symtab_index;
  54. char * new_addr;
  55. char ** got_addr;
  56. unsigned int instr_addr;
  57. sp = &i;
  58. reloc_entry = sp[1];
  59. tpnt = (struct elf_resolve *) sp[0];
  60. rel_addr = (struct elf32_rel *) (tpnt->dynamic_info[DT_JMPREL] +
  61. tpnt->loadaddr);
  62. this_reloc = rel_addr + (reloc_entry >> 3);
  63. reloc_type = ELF32_R_TYPE(this_reloc->r_info);
  64. symtab_index = ELF32_R_SYM(this_reloc->r_info);
  65. symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB] + tpnt->loadaddr);
  66. strtab = (char *) (tpnt->dynamic_info[DT_STRTAB] + tpnt->loadaddr);
  67. if (reloc_type != R_386_JMP_SLOT) {
  68. _dl_fdprintf(2, "%s: Incorrect relocation type in jump relocations\n",
  69. _dl_progname);
  70. _dl_exit(1);
  71. };
  72. /* Address of jump instruction to fix up */
  73. instr_addr = ((int)this_reloc->r_offset + (int)tpnt->loadaddr);
  74. got_addr = (char **) instr_addr;
  75. #ifdef DEBUG
  76. _dl_fdprintf(2, "Resolving symbol %s\n",
  77. strtab + symtab[symtab_index].st_name);
  78. #endif
  79. /* Get the address of the GOT entry */
  80. new_addr = _dl_find_hash(strtab + symtab[symtab_index].st_name,
  81. tpnt->symbol_scope, (int) got_addr, tpnt, 0);
  82. if(!new_addr) {
  83. _dl_fdprintf(2, "%s: can't resolve symbol '%s'\n",
  84. _dl_progname, strtab + symtab[symtab_index].st_name);
  85. _dl_exit(1);
  86. };
  87. /* #define DEBUG_LIBRARY */
  88. #ifdef DEBUG_LIBRARY
  89. if((unsigned int) got_addr < 0x40000000) {
  90. _dl_fdprintf(2, "Calling library function: %s\n",
  91. strtab + symtab[symtab_index].st_name);
  92. } else {
  93. *got_addr = new_addr;
  94. }
  95. #else
  96. *got_addr = new_addr;
  97. #endif
  98. return (unsigned int) new_addr;
  99. }
  100. void _dl_parse_lazy_relocation_information(struct elf_resolve * tpnt, int rel_addr,
  101. int rel_size, int type){
  102. int i;
  103. char * strtab;
  104. int reloc_type;
  105. int symtab_index;
  106. struct elf32_sym * symtab;
  107. struct elf32_rel * rpnt;
  108. unsigned int * reloc_addr;
  109. /* Now parse the relocation information */
  110. rpnt = (struct elf32_rel *) (rel_addr + tpnt->loadaddr);
  111. rel_size = rel_size / sizeof(struct elf32_rel);
  112. symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB] + tpnt->loadaddr);
  113. strtab = ( char *) (tpnt->dynamic_info[DT_STRTAB] + tpnt->loadaddr);
  114. for(i=0; i< rel_size; i++, rpnt++){
  115. reloc_addr = (int *) (tpnt->loadaddr + (int)rpnt->r_offset);
  116. reloc_type = ELF32_R_TYPE(rpnt->r_info);
  117. symtab_index = ELF32_R_SYM(rpnt->r_info);
  118. /* When the dynamic linker bootstrapped itself, it resolved some symbols.
  119. Make sure we do not do them again */
  120. if(!symtab_index && tpnt->libtype == program_interpreter) continue;
  121. if(symtab_index && tpnt->libtype == program_interpreter &&
  122. _dl_symbol(strtab + symtab[symtab_index].st_name))
  123. continue;
  124. switch(reloc_type){
  125. case R_386_NONE: break;
  126. case R_386_JMP_SLOT:
  127. *reloc_addr += (unsigned int) tpnt->loadaddr;
  128. break;
  129. default:
  130. _dl_fdprintf(2, "%s: (LAZY) can't handle reloc type ", _dl_progname);
  131. #ifdef VERBOSE_DLINKER
  132. _dl_fdprintf(2, "%s ", _dl_reltypes[reloc_type]);
  133. #endif
  134. if(symtab_index) _dl_fdprintf(2, "'%s'\n",
  135. strtab + symtab[symtab_index].st_name);
  136. _dl_exit(1);
  137. };
  138. };
  139. }
  140. int _dl_parse_relocation_information(struct elf_resolve * tpnt, int rel_addr,
  141. int rel_size, int type){
  142. int i;
  143. char * strtab;
  144. int reloc_type;
  145. int goof = 0;
  146. struct elf32_sym * symtab;
  147. struct elf32_rel * rpnt;
  148. unsigned int * reloc_addr;
  149. unsigned int symbol_addr;
  150. int symtab_index;
  151. /* Now parse the relocation information */
  152. rpnt = (struct elf32_rel *) (rel_addr + tpnt->loadaddr);
  153. rel_size = rel_size / sizeof(struct elf32_rel);
  154. symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB] + tpnt->loadaddr);
  155. strtab = ( char *) (tpnt->dynamic_info[DT_STRTAB] + tpnt->loadaddr);
  156. for(i=0; i< rel_size; i++, rpnt++){
  157. reloc_addr = (int *) (tpnt->loadaddr + (int)rpnt->r_offset);
  158. reloc_type = ELF32_R_TYPE(rpnt->r_info);
  159. symtab_index = ELF32_R_SYM(rpnt->r_info);
  160. symbol_addr = 0;
  161. if(!symtab_index && tpnt->libtype == program_interpreter) continue;
  162. if(symtab_index) {
  163. if(tpnt->libtype == program_interpreter &&
  164. _dl_symbol(strtab + symtab[symtab_index].st_name))
  165. continue;
  166. symbol_addr = (unsigned int)
  167. _dl_find_hash(strtab + symtab[symtab_index].st_name,
  168. tpnt->symbol_scope, (int) reloc_addr,
  169. (reloc_type == R_386_JMP_SLOT ? tpnt : NULL), 0);
  170. /*
  171. * We want to allow undefined references to weak symbols - this might
  172. * have been intentional. We should not be linking local symbols
  173. * here, so all bases should be covered.
  174. */
  175. if(!symbol_addr &&
  176. ELF32_ST_BIND(symtab[symtab_index].st_info) == STB_GLOBAL) {
  177. _dl_fdprintf(2, "%s: can't resolve symbol '%s'\n",
  178. _dl_progname, strtab + symtab[symtab_index].st_name);
  179. goof++;
  180. }
  181. }
  182. switch(reloc_type){
  183. case R_386_NONE:
  184. break;
  185. case R_386_32:
  186. *reloc_addr += symbol_addr;
  187. break;
  188. case R_386_PC32:
  189. *reloc_addr += symbol_addr - (unsigned int) reloc_addr;
  190. break;
  191. case R_386_GLOB_DAT:
  192. case R_386_JMP_SLOT:
  193. *reloc_addr = symbol_addr;
  194. break;
  195. case R_386_RELATIVE:
  196. *reloc_addr += (unsigned int) tpnt->loadaddr;
  197. break;
  198. case R_386_COPY:
  199. #if 0 /* Do this later */
  200. _dl_fdprintf(2, "Doing copy for symbol ");
  201. if(symtab_index) _dl_fdprintf(2, strtab + symtab[symtab_index].st_name);
  202. _dl_fdprintf(2, "\n");
  203. _dl_memcpy((void *) symtab[symtab_index].st_value,
  204. (void *) symbol_addr,
  205. symtab[symtab_index].st_size);
  206. #endif
  207. break;
  208. default:
  209. _dl_fdprintf(2, "%s: can't handle reloc type ", _dl_progname);
  210. #ifdef VERBOSE_DLINKER
  211. _dl_fdprintf(2, "%s ", _dl_reltypes[reloc_type]);
  212. #endif
  213. if (symtab_index)
  214. _dl_fdprintf(2, "'%s'\n", strtab + symtab[symtab_index].st_name);
  215. _dl_exit(1);
  216. };
  217. };
  218. return goof;
  219. }
  220. /* This is done as a separate step, because there are cases where
  221. information is first copied and later initialized. This results in
  222. the wrong information being copied. Someone at Sun was complaining about
  223. a bug in the handling of _COPY by SVr4, and this may in fact be what he
  224. was talking about. Sigh. */
  225. /* No, there are cases where the SVr4 linker fails to emit COPY relocs
  226. at all */
  227. int _dl_parse_copy_information(struct dyn_elf * xpnt, int rel_addr,
  228. int rel_size, int type)
  229. {
  230. int i;
  231. char * strtab;
  232. int reloc_type;
  233. int goof = 0;
  234. struct elf32_sym * symtab;
  235. struct elf32_rel * rpnt;
  236. unsigned int * reloc_addr;
  237. unsigned int symbol_addr;
  238. struct elf_resolve *tpnt;
  239. int symtab_index;
  240. /* Now parse the relocation information */
  241. tpnt = xpnt->dyn;
  242. rpnt = (struct elf32_rel *) (rel_addr + tpnt->loadaddr);
  243. rel_size = rel_size / sizeof(struct elf32_rel);
  244. symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB] + tpnt->loadaddr);
  245. strtab = ( char *) (tpnt->dynamic_info[DT_STRTAB] + tpnt->loadaddr);
  246. for(i=0; i< rel_size; i++, rpnt++){
  247. reloc_addr = (int *) (tpnt->loadaddr + (int)rpnt->r_offset);
  248. reloc_type = ELF32_R_TYPE(rpnt->r_info);
  249. if(reloc_type != R_386_COPY) continue;
  250. symtab_index = ELF32_R_SYM(rpnt->r_info);
  251. symbol_addr = 0;
  252. if(!symtab_index && tpnt->libtype == program_interpreter) continue;
  253. if(symtab_index) {
  254. if(tpnt->libtype == program_interpreter &&
  255. _dl_symbol(strtab + symtab[symtab_index].st_name))
  256. continue;
  257. symbol_addr = (unsigned int)
  258. _dl_find_hash(strtab + symtab[symtab_index].st_name,
  259. xpnt->next, (int) reloc_addr, NULL, 1);
  260. if(!symbol_addr) {
  261. _dl_fdprintf(2, "%s: can't resolve symbol '%s'\n",
  262. _dl_progname, strtab + symtab[symtab_index].st_name);
  263. goof++;
  264. };
  265. };
  266. if (!goof)
  267. _dl_memcpy((char *) symtab[symtab_index].st_value,
  268. (char *) symbol_addr,
  269. symtab[symtab_index].st_size);
  270. };
  271. return goof;
  272. }