elfinterp.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /* Run an ELF binary on a linux system.
  2. Copyright (C) 1995, Eric Youngdale.
  3. This program is free software; you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation; either version 2, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program; if not, write to the Free Software
  13. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
  14. #ifndef VERBOSE_DLINKER
  15. #define VERBOSE_DLINKER
  16. #endif
  17. #ifdef VERBOSE_DLINKER
  18. static char * _dl_reltypes[] = { "R_SPARC_NONE", "R_SPARC_8",
  19. "R_SPARC_16", "R_SPARC_32", "R_SPARC_DISP8", "R_SPARC_DISP16",
  20. "R_SPARC_DISP32", "R_SPARC_WDISP30", "R_SPARC_WDISP22",
  21. "R_SPARC_HI22", "R_SPARC_22", "R_SPARC_13", "R_SPARC_LO10",
  22. "R_SPARC_GOT10", "R_SPARC_GOT13", "R_SPARC_GOT22", "R_SPARC_PC10",
  23. "R_SPARC_PC22", "R_SPARC_WPLT30", "R_SPARC_COPY",
  24. "R_SPARC_GLOB_DAT", "R_SPARC_JMP_SLOT", "R_SPARC_RELATIVE",
  25. "R_SPARC_UA32"};
  26. #endif
  27. /* Program to load an ELF binary on a linux system, and run it.
  28. References to symbols in sharable libraries can be resolved by either
  29. an ELF sharable library or a linux style of shared library. */
  30. /* Disclaimer: I have never seen any AT&T source code for SVr4, nor have
  31. I ever taken any courses on internals. This program was developed using
  32. information available through the book "UNIX SYSTEM V RELEASE 4,
  33. Programmers guide: Ansi C and Programming Support Tools", which did
  34. a more than adequate job of explaining everything required to get this
  35. working. */
  36. #include <linux/types.h>
  37. #include <linux/errno.h>
  38. #include <linux/unistd.h>
  39. /*#include <stdlib.h>*/
  40. #include "string.h"
  41. #include <linux/unistd.h>
  42. #include <linux/fcntl.h>
  43. #include "hash.h"
  44. #include "linuxelf.h"
  45. #include "sysdep.h"
  46. #include "../syscall.h"
  47. #include "../string.h"
  48. #define SVR4_COMPATIBILITY
  49. extern char *_dl_progname;
  50. extern _dl_linux_resolve(void);
  51. unsigned int _dl_linux_resolver(unsigned int reloc_entry, unsigned int * plt)
  52. {
  53. int reloc_type;
  54. struct elf32_rela * this_reloc;
  55. char * strtab;
  56. struct elf32_sym * symtab;
  57. struct elf32_rela * rel_addr;
  58. struct elf_resolve * tpnt;
  59. int symtab_index;
  60. char * new_addr;
  61. char ** got_addr;
  62. unsigned int instr_addr;
  63. tpnt = (struct elf_resolve *) plt[2];
  64. rel_addr = (struct elf32_rela *) (tpnt->dynamic_info[DT_JMPREL] +
  65. tpnt->loadaddr);
  66. /*
  67. * Generate the correct relocation index into the .rela.plt section.
  68. */
  69. reloc_entry = (reloc_entry >> 12) - 0xc;
  70. this_reloc = (struct elf32_rela *) ((char *) rel_addr + reloc_entry);
  71. reloc_type = ELF32_R_TYPE(this_reloc->r_info);
  72. symtab_index = ELF32_R_SYM(this_reloc->r_info);
  73. symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB] + tpnt->loadaddr);
  74. strtab = (char *) (tpnt->dynamic_info[DT_STRTAB] + tpnt->loadaddr);
  75. _dl_fdprintf(2, "tpnt = %x\n", tpnt);
  76. _dl_fdprintf(2, "reloc = %x\n", this_reloc);
  77. _dl_fdprintf(2, "symtab = %x\n", symtab);
  78. _dl_fdprintf(2, "strtab = %x\n", strtab);
  79. if (reloc_type != R_SPARC_JMP_SLOT) {
  80. _dl_fdprintf(2, "%s: incorrect relocation type in jump relocations (%d)\n",
  81. _dl_progname, reloc_type);
  82. _dl_exit(30);
  83. };
  84. /* Address of jump instruction to fix up */
  85. instr_addr = ((int)this_reloc->r_offset + (int)tpnt->loadaddr);
  86. got_addr = (char **) instr_addr;
  87. _dl_fdprintf(2, "symtab_index %d\n", symtab_index);
  88. #ifdef DEBUG
  89. _dl_fdprintf(2, "Resolving symbol %s\n",
  90. strtab + symtab[symtab_index].st_name);
  91. #endif
  92. /* Get the address of the GOT entry */
  93. new_addr = _dl_find_hash(strtab + symtab[symtab_index].st_name,
  94. tpnt->symbol_scope, (int) got_addr, tpnt, 0);
  95. if(!new_addr) {
  96. _dl_fdprintf(2, "%s: can't resolve symbol '%s'\n",
  97. _dl_progname, strtab + symtab[symtab_index].st_name);
  98. _dl_exit(31);
  99. };
  100. /* #define DEBUG_LIBRARY */
  101. #ifdef DEBUG_LIBRARY
  102. if((unsigned int) got_addr < 0x40000000) {
  103. _dl_fdprintf(2, "Calling library function: %s\n",
  104. strtab + symtab[symtab_index].st_name);
  105. } else {
  106. got_addr[1] = (char *) (0x03000000 | (((unsigned int) new_addr >> 10) & 0x3fffff));
  107. got_addr[2] = (char *) (0x81c06000 | ((unsigned int) new_addr & 0x3ff));
  108. }
  109. #else
  110. got_addr[1] = (char *) (0x03000000 | (((unsigned int) new_addr >> 10) & 0x3fffff));
  111. got_addr[2] = (char *) (0x81c06000 | ((unsigned int) new_addr & 0x3ff));
  112. #endif
  113. _dl_fdprintf(2, "Address = %x\n",new_addr);
  114. _dl_exit(32);
  115. return (unsigned int) new_addr;
  116. }
  117. void _dl_parse_lazy_relocation_information(struct elf_resolve * tpnt, int rel_addr,
  118. int rel_size, int type){
  119. int i;
  120. char * strtab;
  121. int reloc_type;
  122. int symtab_index;
  123. struct elf32_sym * symtab;
  124. struct elf32_rela * rpnt;
  125. unsigned int * reloc_addr;
  126. /* Now parse the relocation information */
  127. rpnt = (struct elf32_rela *) (rel_addr + tpnt->loadaddr);
  128. symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB] + tpnt->loadaddr);
  129. strtab = ( char *) (tpnt->dynamic_info[DT_STRTAB] + tpnt->loadaddr);
  130. for(i=0; i< rel_size; i += sizeof(struct elf32_rela), rpnt++){
  131. reloc_addr = (int *) (tpnt->loadaddr + (int)rpnt->r_offset);
  132. reloc_type = ELF32_R_TYPE(rpnt->r_info);
  133. symtab_index = ELF32_R_SYM(rpnt->r_info);
  134. /* When the dynamic linker bootstrapped itself, it resolved some symbols.
  135. Make sure we do not do them again */
  136. if(!symtab_index && tpnt->libtype == program_interpreter) continue;
  137. if(symtab_index && tpnt->libtype == program_interpreter &&
  138. _dl_symbol(strtab + symtab[symtab_index].st_name))
  139. continue;
  140. switch(reloc_type){
  141. case R_SPARC_NONE:
  142. break;
  143. case R_SPARC_JMP_SLOT:
  144. break;
  145. default:
  146. _dl_fdprintf(2, "%s: (LAZY) can't handle reloc type ", _dl_progname);
  147. #ifdef VERBOSE_DLINKER
  148. _dl_fdprintf(2, "%s ", _dl_reltypes[reloc_type]);
  149. #endif
  150. if(symtab_index) _dl_fdprintf(2, "'%s'\n",
  151. strtab + symtab[symtab_index].st_name);
  152. _dl_exit(33);
  153. };
  154. };
  155. }
  156. int _dl_parse_relocation_information(struct elf_resolve * tpnt, int rel_addr,
  157. int rel_size, int type){
  158. int i;
  159. char * strtab;
  160. int reloc_type;
  161. int goof = 0;
  162. struct elf32_sym * symtab;
  163. struct elf32_rela * rpnt;
  164. unsigned int * reloc_addr;
  165. unsigned int symbol_addr;
  166. int symtab_index;
  167. /* Now parse the relocation information */
  168. rpnt = (struct elf32_rela *) (rel_addr + tpnt->loadaddr);
  169. symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB] + tpnt->loadaddr);
  170. strtab = ( char *) (tpnt->dynamic_info[DT_STRTAB] + tpnt->loadaddr);
  171. for(i=0; i< rel_size; i+= sizeof(struct elf32_rela), rpnt++){
  172. reloc_addr = (int *) (tpnt->loadaddr + (int)rpnt->r_offset);
  173. reloc_type = ELF32_R_TYPE(rpnt->r_info);
  174. symtab_index = ELF32_R_SYM(rpnt->r_info);
  175. symbol_addr = 0;
  176. if(!symtab_index && tpnt->libtype == program_interpreter) continue;
  177. if(symtab_index) {
  178. if(tpnt->libtype == program_interpreter &&
  179. _dl_symbol(strtab + symtab[symtab_index].st_name))
  180. continue;
  181. symbol_addr = (unsigned int)
  182. _dl_find_hash(strtab + symtab[symtab_index].st_name,
  183. tpnt->symbol_scope, (int) reloc_addr,
  184. (reloc_type == R_SPARC_JMP_SLOT ? tpnt : NULL), 0);
  185. if(!symbol_addr &&
  186. ELF32_ST_BIND(symtab [symtab_index].st_info) == STB_GLOBAL) {
  187. _dl_fdprintf(2, "%s: can't resolve symbol '%s'\n",
  188. _dl_progname, strtab + symtab[symtab_index].st_name);
  189. goof++;
  190. };
  191. };
  192. switch(reloc_type){
  193. case R_SPARC_NONE:
  194. break;
  195. case R_SPARC_32:
  196. *reloc_addr = symbol_addr + rpnt->r_addend;
  197. break;
  198. case R_SPARC_DISP32:
  199. *reloc_addr = symbol_addr + rpnt->r_addend - (unsigned int) reloc_addr;
  200. break;
  201. case R_SPARC_GLOB_DAT:
  202. *reloc_addr = symbol_addr + rpnt->r_addend;
  203. break;
  204. case R_SPARC_JMP_SLOT:
  205. reloc_addr[1] = 0x03000000 | ((symbol_addr >> 10) & 0x3fffff);
  206. reloc_addr[2] = 0x81c06000 | (symbol_addr & 0x3ff);
  207. break;
  208. case R_SPARC_RELATIVE:
  209. *reloc_addr += (unsigned int) tpnt->loadaddr + rpnt->r_addend;
  210. break;
  211. case R_SPARC_HI22:
  212. if (!symbol_addr)
  213. symbol_addr = tpnt->loadaddr + rpnt->r_addend;
  214. else
  215. symbol_addr += rpnt->r_addend;
  216. *reloc_addr = (*reloc_addr & 0xffc00000)|(symbol_addr >> 10);
  217. break;
  218. case R_SPARC_LO10:
  219. if (!symbol_addr)
  220. symbol_addr = tpnt->loadaddr + rpnt->r_addend;
  221. else
  222. symbol_addr += rpnt->r_addend;
  223. *reloc_addr = (*reloc_addr & ~0x3ff)|(symbol_addr & 0x3ff);
  224. break;
  225. case R_SPARC_WDISP30:
  226. *reloc_addr = (*reloc_addr & 0xc0000000)|
  227. ((symbol_addr - (unsigned int) reloc_addr) >> 2);
  228. break;
  229. case R_SPARC_COPY:
  230. #if 0 /* This one is done later */
  231. _dl_fdprintf(2, "Doing copy for symbol ");
  232. if(symtab_index) _dl_fdprintf(2, strtab + symtab[symtab_index].st_name);
  233. _dl_fdprintf(2, "\n");
  234. _dl_memcpy((void *) symtab[symtab_index].st_value,
  235. (void *) symbol_addr,
  236. symtab[symtab_index].st_size);
  237. #endif
  238. break;
  239. default:
  240. _dl_fdprintf(2, "%s: can't handle reloc type ", _dl_progname);
  241. #ifdef VERBOSE_DLINKER
  242. _dl_fdprintf(2, "%s ", _dl_reltypes[reloc_type]);
  243. #endif
  244. if (symtab_index)
  245. _dl_fdprintf(2, "'%s'\n", strtab + symtab[symtab_index].st_name);
  246. _dl_exit(34);
  247. };
  248. };
  249. return goof;
  250. }
  251. /* This is done as a separate step, because there are cases where
  252. information is first copied and later initialized. This results in
  253. the wrong information being copied. Someone at Sun was complaining about
  254. a bug in the handling of _COPY by SVr4, and this may in fact be what he
  255. was talking about. Sigh. */
  256. /* No, there are cases where the SVr4 linker fails to emit COPY relocs
  257. at all */
  258. int _dl_parse_copy_information(struct dyn_elf * xpnt, int rel_addr,
  259. int rel_size, int type)
  260. {
  261. int i;
  262. char * strtab;
  263. int reloc_type;
  264. int goof = 0;
  265. struct elf32_sym * symtab;
  266. struct elf32_rela * rpnt;
  267. unsigned int * reloc_addr;
  268. unsigned int symbol_addr;
  269. struct elf_resolve *tpnt;
  270. int symtab_index;
  271. /* Now parse the relocation information */
  272. tpnt = xpnt->dyn;
  273. rpnt = (struct elf32_rela *) (rel_addr + tpnt->loadaddr);
  274. symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB] + tpnt->loadaddr);
  275. strtab = ( char *) (tpnt->dynamic_info[DT_STRTAB] + tpnt->loadaddr);
  276. for(i=0; i< rel_size; i+= sizeof(struct elf32_rela), rpnt++){
  277. reloc_addr = (int *) (tpnt->loadaddr + (int)rpnt->r_offset);
  278. reloc_type = ELF32_R_TYPE(rpnt->r_info);
  279. if(reloc_type != R_SPARC_COPY) continue;
  280. symtab_index = ELF32_R_SYM(rpnt->r_info);
  281. symbol_addr = 0;
  282. if(!symtab_index && tpnt->libtype == program_interpreter) continue;
  283. if(symtab_index) {
  284. if(tpnt->libtype == program_interpreter &&
  285. _dl_symbol(strtab + symtab[symtab_index].st_name))
  286. continue;
  287. symbol_addr = (unsigned int)
  288. _dl_find_hash(strtab + symtab[symtab_index].st_name,
  289. xpnt->next, (int) reloc_addr, NULL, 1);
  290. if(!symbol_addr) {
  291. _dl_fdprintf(2, "%s: can't resolve symbol '%s'\n",
  292. _dl_progname, strtab + symtab[symtab_index].st_name);
  293. goof++;
  294. };
  295. };
  296. if (!goof)
  297. _dl_memcpy((char *) symtab[symtab_index].st_value,
  298. (char *) symbol_addr,
  299. symtab[symtab_index].st_size);
  300. };
  301. return goof;
  302. }