| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 | /* Prototype declarations for math functions; helper file for <math.h>.   Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc.   This file is part of the GNU C Library.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Library General Public License as   published by the Free Software Foundation; either version 2 of the   License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Library General Public License for more details.   You should have received a copy of the GNU Library General Public   License along with the GNU C Library; see the file COPYING.LIB.  If not,   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,   Boston, MA 02111-1307, USA.  *//* NOTE: Because of the special way this file is used by <math.h>, this   file must NOT be protected from multiple inclusion as header files   usually are.   This file provides prototype declarations for the math functions.   Most functions are declared using the macro:   __MATHCALL (NAME,[_r], (ARGS...));   This means there is a function `NAME' returning `double' and a function   `NAMEf' returning `float'.  Each place `_Mdouble_' appears in the   prototype, that is actually `double' in the prototype for `NAME' and   `float' in the prototype for `NAMEf'.  Reentrant variant functions are   called `NAME_r' and `NAMEf_r'.   Functions returning other types like `int' are declared using the macro:   __MATHDECL (TYPE, NAME,[_r], (ARGS...));   This is just like __MATHCALL but for a function returning `TYPE'   instead of `_Mdouble_'.  In all of these cases, there is still   both a `NAME' and a `NAMEf' that takes `float' arguments.   Note that there must be no whitespace before the argument passed for   NAME, to make token pasting work with -traditional.  */#ifndef _MATH_H #error "Never include <bits/mathcalls.h> directly; include <math.h> instead."#endif__BEGIN_DECLS/* Trigonometric functions.  *//* Arc cosine of X.  */__MATHCALL (acos,, (_Mdouble_ __x));/* Arc sine of X.  */__MATHCALL (asin,, (_Mdouble_ __x));/* Arc tangent of X.  */__MATHCALL (atan,, (_Mdouble_ __x));/* Arc tangent of Y/X.  */__MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));/* Cosine of X.  */__MATHCALL (cos,, (_Mdouble_ __x));/* Sine of X.  */__MATHCALL (sin,, (_Mdouble_ __x));/* Tangent of X.  */__MATHCALL (tan,, (_Mdouble_ __x));#ifdef __USE_GNU/* Cosine and sine of X.  */__MATHDECL (void,sincos,,	    (_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx));#endif/* Hyperbolic functions.  *//* Hyperbolic cosine of X.  */__MATHCALL (cosh,, (_Mdouble_ __x));/* Hyperbolic sine of X.  */__MATHCALL (sinh,, (_Mdouble_ __x));/* Hyperbolic tangent of X.  */__MATHCALL (tanh,, (_Mdouble_ __x));#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X/* Hyperbolic arc cosine of X.  */__MATHCALL (acosh,, (_Mdouble_ __x));/* Hyperbolic arc sine of X.  */__MATHCALL (asinh,, (_Mdouble_ __x));/* Hyperbolic arc tangent of X.  */__MATHCALL (atanh,, (_Mdouble_ __x));#endif/* Exponential and logarithmic functions.  *//* Exponential function of X.  */__MATHCALL (exp,, (_Mdouble_ __x));#ifdef __USE_GNU/* A function missing in all standards: compute exponent to base ten.  */__MATHCALL (exp10,, (_Mdouble_ __x));/* Another name occasionally used.  */__MATHCALL (pow10,, (_Mdouble_ __x));#endif/* Break VALUE into a normalized fraction and an integral power of 2.  */__MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent));/* X times (two to the EXP power).  */__MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent));/* Natural logarithm of X.  */__MATHCALL (log,, (_Mdouble_ __x));/* Base-ten logarithm of X.  */__MATHCALL (log10,, (_Mdouble_ __x));/* Break VALUE into integral and fractional parts.  */__MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr));#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X/* Return exp(X) - 1.  */__MATHCALL (expm1,, (_Mdouble_ __x));/* Return log(1 + X).  */__MATHCALL (log1p,, (_Mdouble_ __x));/* Return the base 2 signed integral exponent of X.  */__MATHCALL (logb,, (_Mdouble_ __x));#endif#ifdef __USE_ISOC9X/* Compute base-2 exponential of X.  */__MATHCALL (exp2,, (_Mdouble_ __x));/* Compute base-2 logarithm of X.  */__MATHCALL (log2,, (_Mdouble_ __x));#endif/* Power functions.  *//* Return X to the Y power.  */__MATHCALL (pow,, (_Mdouble_ __x, _Mdouble_ __y));/* Return the square root of X.  */__MATHCALL (sqrt,, (_Mdouble_ __x));#if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC9X/* Return `sqrt(X*X + Y*Y)'.  */__MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));#endif#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X/* Return the cube root of X.  */__MATHCALL (cbrt,, (_Mdouble_ __x));#endif/* Nearest integer, absolute value, and remainder functions.  *//* Smallest integral value not less than X.  */__MATHCALL (ceil,, (_Mdouble_ __x));/* Absolute value of X.  */__MATHCALLX (fabs,, (_Mdouble_ __x), (__const__));/* Largest integer not greater than X.  */__MATHCALL (floor,, (_Mdouble_ __x));/* Floating-point modulo remainder of X/Y.  */__MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));/* Return 0 if VALUE is finite or NaN, +1 if it   is +Infinity, -1 if it is -Infinity.  */__MATHDECL_1 (int,__isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));/* Return nonzero if VALUE is finite and not NaN.  */__MATHDECL_1 (int,__finite,, (_Mdouble_ __value)) __attribute__ ((__const__));#ifdef __USE_MISC/* Return 0 if VALUE is finite or NaN, +1 if it   is +Infinity, -1 if it is -Infinity.  */__MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));/* Return nonzero if VALUE is finite and not NaN.  */__MATHDECL_1 (int,finite,, (_Mdouble_ __value)) __attribute__ ((__const__));/* Deal with an infinite or NaN result.   If ERROR is ERANGE, result is +Inf;   if ERROR is - ERANGE, result is -Inf;   otherwise result is NaN.   This will set `errno' to either ERANGE or EDOM,   and may return an infinity or NaN, or may do something else.  */__MATHCALLX (infnan,, (int __error), (__const__));/* Return the remainder of X/Y.  */__MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));/* Return the fractional part of X after dividing out `ilogb (X)'.  */__MATHCALL (significand,, (_Mdouble_ __x));#endif /* Use misc.  */#if defined __USE_MISC || defined __USE_ISOC9X/* Return X with its signed changed to Y's.  */__MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));#endif#ifdef __USE_ISOC9X/* Return representation of NaN for double type.  */__MATHCALLX (nan,, (__const char *__tagb), (__const__));#endif/* Return nonzero if VALUE is not a number.  */__MATHDECL_1 (int,__isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));#if defined __USE_MISC || defined __USE_XOPEN/* Return nonzero if VALUE is not a number.  */__MATHDECL_1 (int,isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));/* Bessel functions.  */__MATHCALL (j0,, (_Mdouble_));__MATHCALL (j1,, (_Mdouble_));__MATHCALL (jn,, (int, _Mdouble_));__MATHCALL (y0,, (_Mdouble_));__MATHCALL (y1,, (_Mdouble_));__MATHCALL (yn,, (int, _Mdouble_));#endif#if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC9X/* Error and gamma functions.  */__MATHCALL (erf,, (_Mdouble_));__MATHCALL (erfc,, (_Mdouble_));__MATHCALL (lgamma,, (_Mdouble_));__MATHCALL (tgamma,, (_Mdouble_));#endif#if defined __USE_MISC || defined __USE_XOPEN/* Obsolete alias for `lgamma'.  */__MATHCALL (gamma,, (_Mdouble_));#endif#ifdef __USE_MISC/* Reentrant version of lgamma.  This function uses the global variable   `signgam'.  The reentrant version instead takes a pointer and stores   the value through it.  */__MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp));#endif#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X/* Return the integer nearest X in the direction of the   prevailing rounding mode.  */__MATHCALL (rint,, (_Mdouble_ __x));/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */__MATHCALLX (nextafter,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));# ifdef __USE_ISOC9X__MATHCALLX (nexttoward,, (_Mdouble_ __x, long double __y), (__const__));# endif/* Return the remainder of integer divison X / Y with infinite precision.  */__MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));# if defined __USE_MISC || defined __USE_XOPEN_EXTENDED/* Return X times (2 to the Nth power).  */__MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));# endif/* Return X times (2 to the Nth power).  */__MATHCALL (scalbn,, (_Mdouble_ __x, int __n));/* Return the binary exponent of X, which must be nonzero.  */__MATHDECL (int,ilogb,, (_Mdouble_ __x));#endif#ifdef __USE_ISOC9X/* Return X times (2 to the Nth power).  */__MATHCALL (scalbln,, (_Mdouble_ __x, long int __n));/* Round X to integral value in floating-point format using current   rounding direction, but do not raise inexact exception.  */__MATHCALL (nearbyint,, (_Mdouble_ __x));/* Round X to nearest integral value, rounding halfway cases away from   zero.  */__MATHCALL (round,, (_Mdouble_ __x));/* Round X to the integral value in floating-point format nearest but   not larger in magnitude.  */__MATHCALLX (trunc,, (_Mdouble_ __x), (__const__));/* Compute remainder of X and Y and put in *QUO a value with sign of x/y   and magnitude congruent `mod 2^n' to the magnitude of the integral   quotient x/y, with n >= 3.  */__MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo));/* Conversion functions.  *//* Round X to nearest integral value according to current rounding   direction.  */__MATHDECL (long int,lrint,, (_Mdouble_ __x));__MATHDECL (long long int,llrint,, (_Mdouble_ __x));/* Round X to nearest integral value, rounding halfway cases away from   zero.  */__MATHDECL (long int,lround,, (_Mdouble_ __x));__MATHDECL (long long int,llround,, (_Mdouble_ __x));/* Return positive difference between X and Y.  */__MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y));/* Return maximum numeric value from X and Y.  */__MATHCALL (fmax,, (_Mdouble_ __x, _Mdouble_ __y));/* Return minimum numeric value from X and Y.  */__MATHCALL (fmin,, (_Mdouble_ __x, _Mdouble_ __y));/* Classify given number.  */__MATHDECL_1 (int, __fpclassify,, (_Mdouble_ __value))     __attribute__ ((__const__));/* Test for negative number.  */__MATHDECL_1 (int, __signbit,, (_Mdouble_ __value))     __attribute__ ((__const__));/* Multiply-add function computed as a ternary operation.  */__MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z));#endif /* Use ISO C 9X.  */__END_DECLS
 |