| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 | /* Linuxthreads - a simple clone()-based implementation of Posix        *//* threads for Linux.                                                   *//* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr)              *//*                                                                      *//* This program is free software; you can redistribute it and/or        *//* modify it under the terms of the GNU Library General Public License  *//* as published by the Free Software Foundation; either version 2       *//* of the License, or (at your option) any later version.               *//*                                                                      *//* This program is distributed in the hope that it will be useful,      *//* but WITHOUT ANY WARRANTY; without even the implied warranty of       *//* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the        *//* GNU Library General Public License for more details.                 *//* Mutexes */#include <errno.h>#include <sched.h>#include <stddef.h>#include <limits.h>#include "pthread.h"#include "internals.h"#include "spinlock.h"#include "queue.h"#include "restart.h"int attribute_hidden __pthread_mutex_init(pthread_mutex_t * mutex,                       const pthread_mutexattr_t * mutex_attr){  __pthread_init_lock(&mutex->__m_lock);  mutex->__m_kind =    mutex_attr == NULL ? PTHREAD_MUTEX_TIMED_NP : mutex_attr->__mutexkind;  mutex->__m_count = 0;  mutex->__m_owner = NULL;  return 0;}strong_alias (__pthread_mutex_init, pthread_mutex_init)int attribute_hidden __pthread_mutex_destroy(pthread_mutex_t * mutex){  switch (mutex->__m_kind) {  case PTHREAD_MUTEX_ADAPTIVE_NP:  case PTHREAD_MUTEX_RECURSIVE_NP:    if ((mutex->__m_lock.__status & 1) != 0)      return EBUSY;    return 0;  case PTHREAD_MUTEX_ERRORCHECK_NP:  case PTHREAD_MUTEX_TIMED_NP:    if (mutex->__m_lock.__status != 0)      return EBUSY;    return 0;  default:    return EINVAL;  }}strong_alias (__pthread_mutex_destroy, pthread_mutex_destroy)int attribute_hidden __pthread_mutex_trylock(pthread_mutex_t * mutex){  pthread_descr self;  int retcode;  switch(mutex->__m_kind) {  case PTHREAD_MUTEX_ADAPTIVE_NP:    retcode = __pthread_trylock(&mutex->__m_lock);    return retcode;  case PTHREAD_MUTEX_RECURSIVE_NP:    self = thread_self();    if (mutex->__m_owner == self) {      mutex->__m_count++;      return 0;    }    retcode = __pthread_trylock(&mutex->__m_lock);    if (retcode == 0) {      mutex->__m_owner = self;      mutex->__m_count = 0;    }    return retcode;  case PTHREAD_MUTEX_ERRORCHECK_NP:    retcode = __pthread_alt_trylock(&mutex->__m_lock);    if (retcode == 0) {      mutex->__m_owner = thread_self();    }    return retcode;  case PTHREAD_MUTEX_TIMED_NP:    retcode = __pthread_alt_trylock(&mutex->__m_lock);    return retcode;  default:    return EINVAL;  }}strong_alias (__pthread_mutex_trylock, pthread_mutex_trylock)int attribute_hidden __pthread_mutex_lock(pthread_mutex_t * mutex){  pthread_descr self;  switch(mutex->__m_kind) {  case PTHREAD_MUTEX_ADAPTIVE_NP:    __pthread_lock(&mutex->__m_lock, NULL);    return 0;  case PTHREAD_MUTEX_RECURSIVE_NP:    self = thread_self();    if (mutex->__m_owner == self) {      mutex->__m_count++;      return 0;    }    __pthread_lock(&mutex->__m_lock, self);    mutex->__m_owner = self;    mutex->__m_count = 0;    return 0;  case PTHREAD_MUTEX_ERRORCHECK_NP:    self = thread_self();    if (mutex->__m_owner == self) return EDEADLK;    __pthread_alt_lock(&mutex->__m_lock, self);    mutex->__m_owner = self;    return 0;  case PTHREAD_MUTEX_TIMED_NP:    __pthread_alt_lock(&mutex->__m_lock, NULL);    return 0;  default:    return EINVAL;  }}strong_alias (__pthread_mutex_lock, pthread_mutex_lock)int pthread_mutex_timedlock (pthread_mutex_t *mutex,			       const struct timespec *abstime){  pthread_descr self;  int res;  if (__builtin_expect (abstime->tv_nsec, 0) < 0      || __builtin_expect (abstime->tv_nsec, 0) >= 1000000000)    return EINVAL;  switch(mutex->__m_kind) {  case PTHREAD_MUTEX_ADAPTIVE_NP:    __pthread_lock(&mutex->__m_lock, NULL);    return 0;  case PTHREAD_MUTEX_RECURSIVE_NP:    self = thread_self();    if (mutex->__m_owner == self) {      mutex->__m_count++;      return 0;    }    __pthread_lock(&mutex->__m_lock, self);    mutex->__m_owner = self;    mutex->__m_count = 0;    return 0;  case PTHREAD_MUTEX_ERRORCHECK_NP:    self = thread_self();    if (mutex->__m_owner == self) return EDEADLK;    res = __pthread_alt_timedlock(&mutex->__m_lock, self, abstime);    if (res != 0)      {	mutex->__m_owner = self;	return 0;      }    return ETIMEDOUT;  case PTHREAD_MUTEX_TIMED_NP:    /* Only this type supports timed out lock. */    return (__pthread_alt_timedlock(&mutex->__m_lock, NULL, abstime)	    ? 0 : ETIMEDOUT);  default:    return EINVAL;  }}int attribute_hidden __pthread_mutex_unlock(pthread_mutex_t * mutex){  switch (mutex->__m_kind) {  case PTHREAD_MUTEX_ADAPTIVE_NP:    __pthread_unlock(&mutex->__m_lock);    return 0;  case PTHREAD_MUTEX_RECURSIVE_NP:    if (mutex->__m_owner != thread_self())      return EPERM;    if (mutex->__m_count > 0) {      mutex->__m_count--;      return 0;    }    mutex->__m_owner = NULL;    __pthread_unlock(&mutex->__m_lock);    return 0;  case PTHREAD_MUTEX_ERRORCHECK_NP:    if (mutex->__m_owner != thread_self() || mutex->__m_lock.__status == 0)      return EPERM;    mutex->__m_owner = NULL;    __pthread_alt_unlock(&mutex->__m_lock);    return 0;  case PTHREAD_MUTEX_TIMED_NP:    __pthread_alt_unlock(&mutex->__m_lock);    return 0;  default:    return EINVAL;  }}strong_alias (__pthread_mutex_unlock, pthread_mutex_unlock)int attribute_hidden __pthread_mutexattr_init(pthread_mutexattr_t *attr){  attr->__mutexkind = PTHREAD_MUTEX_TIMED_NP;  return 0;}strong_alias(__pthread_mutexattr_init,pthread_mutexattr_init)int attribute_hidden __pthread_mutexattr_destroy(pthread_mutexattr_t *attr attribute_unused){  return 0;}strong_alias(__pthread_mutexattr_destroy,pthread_mutexattr_destroy)int attribute_hidden __pthread_mutexattr_settype(pthread_mutexattr_t *attr, int kind){  if (kind != PTHREAD_MUTEX_ADAPTIVE_NP      && kind != PTHREAD_MUTEX_RECURSIVE_NP      && kind != PTHREAD_MUTEX_ERRORCHECK_NP      && kind != PTHREAD_MUTEX_TIMED_NP)    return EINVAL;  attr->__mutexkind = kind;  return 0;}strong_alias(__pthread_mutexattr_settype,pthread_mutexattr_settype)strong_alias (__pthread_mutexattr_settype, __pthread_mutexattr_setkind_np)weak_alias (__pthread_mutexattr_setkind_np, pthread_mutexattr_setkind_np)int __pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *kind) attribute_hidden;int __pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *kind){  *kind = attr->__mutexkind;  return 0;}weak_alias (__pthread_mutexattr_gettype, pthread_mutexattr_gettype)strong_alias (__pthread_mutexattr_gettype, __pthread_mutexattr_getkind_np)weak_alias (__pthread_mutexattr_getkind_np, pthread_mutexattr_getkind_np)int __pthread_mutexattr_getpshared (const pthread_mutexattr_t *attr attribute_unused,				   int *pshared) attribute_hidden;int __pthread_mutexattr_getpshared (const pthread_mutexattr_t *attr attribute_unused,				   int *pshared){  *pshared = PTHREAD_PROCESS_PRIVATE;  return 0;}weak_alias (__pthread_mutexattr_getpshared, pthread_mutexattr_getpshared)int __pthread_mutexattr_setpshared (pthread_mutexattr_t *attr attribute_unused, int pshared) attribute_hidden;int __pthread_mutexattr_setpshared (pthread_mutexattr_t *attr attribute_unused, int pshared){  if (pshared != PTHREAD_PROCESS_PRIVATE && pshared != PTHREAD_PROCESS_SHARED)    return EINVAL;  /* For now it is not possible to shared a conditional variable.  */  if (pshared != PTHREAD_PROCESS_PRIVATE)    return ENOSYS;  return 0;}weak_alias (__pthread_mutexattr_setpshared, pthread_mutexattr_setpshared)/* Once-only execution */static pthread_mutex_t once_masterlock = PTHREAD_MUTEX_INITIALIZER;static pthread_cond_t once_finished = PTHREAD_COND_INITIALIZER;static int fork_generation = 0;	/* Child process increments this after fork. */enum { NEVER = 0, IN_PROGRESS = 1, DONE = 2 };/* If a thread is canceled while calling the init_routine out of   pthread once, this handler will reset the once_control variable   to the NEVER state. */static void pthread_once_cancelhandler(void *arg){    pthread_once_t *once_control = arg;    __pthread_mutex_lock(&once_masterlock);    *once_control = NEVER;    __pthread_mutex_unlock(&once_masterlock);    pthread_cond_broadcast(&once_finished);}int __pthread_once(pthread_once_t * once_control, void (*init_routine)(void)){  /* flag for doing the condition broadcast outside of mutex */  int state_changed;  /* Test without locking first for speed */  if (*once_control == DONE) {    READ_MEMORY_BARRIER();    return 0;  }  /* Lock and test again */  state_changed = 0;  __pthread_mutex_lock(&once_masterlock);  /* If this object was left in an IN_PROGRESS state in a parent     process (indicated by stale generation field), reset it to NEVER. */  if ((*once_control & 3) == IN_PROGRESS && (*once_control & ~3) != fork_generation)    *once_control = NEVER;  /* If init_routine is being called from another routine, wait until     it completes. */  while ((*once_control & 3) == IN_PROGRESS) {    pthread_cond_wait(&once_finished, &once_masterlock);  }  /* Here *once_control is stable and either NEVER or DONE. */  if (*once_control == NEVER) {    *once_control = IN_PROGRESS | fork_generation;    __pthread_mutex_unlock(&once_masterlock);    pthread_cleanup_push(pthread_once_cancelhandler, once_control);    init_routine();    pthread_cleanup_pop(0);    __pthread_mutex_lock(&once_masterlock);    WRITE_MEMORY_BARRIER();    *once_control = DONE;    state_changed = 1;  }  __pthread_mutex_unlock(&once_masterlock);  if (state_changed)    pthread_cond_broadcast(&once_finished);  return 0;}strong_alias (__pthread_once, pthread_once)/* * Handle the state of the pthread_once mechanism across forks.  The * once_masterlock is acquired in the parent process prior to a fork to ensure * that no thread is in the critical region protected by the lock.  After the * fork, the lock is released. In the child, the lock and the condition * variable are simply reset.  The child also increments its generation * counter which lets pthread_once calls detect stale IN_PROGRESS states * and reset them back to NEVER. */void __pthread_once_fork_prepare(void);void __pthread_once_fork_prepare(void){  __pthread_mutex_lock(&once_masterlock);}void __pthread_once_fork_parent(void);void __pthread_once_fork_parent(void){  __pthread_mutex_unlock(&once_masterlock);}void __pthread_once_fork_child(void);void __pthread_once_fork_child(void){  __pthread_mutex_init(&once_masterlock, NULL);  pthread_cond_init(&once_finished, NULL);  if (fork_generation <= INT_MAX - 4)    fork_generation += 4;	/* leave least significant two bits zero */  else    fork_generation = 0;}
 |