| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 | /* @(#)k_cos.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $";#endif/* * __kernel_cos( x,  y ) * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * * Algorithm *	1. Since cos(-x) = cos(x), we need only to consider positive x. *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. *	3. cos(x) is approximated by a polynomial of degree 14 on *	   [0,pi/4] *		  	                 4            14 *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x *	   where the remez error is * * 	|              2     4     6     8     10    12     14 |     -58 * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2 * 	|    					               | * * 	               4     6     8     10    12     14 *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then *	       cos(x) = 1 - x*x/2 + r *	   since cos(x+y) ~ cos(x) - sin(x)*y *			  ~ cos(x) - x*y, *	   a correction term is necessary in cos(x) and hence *		cos(x+y) = 1 - (x*x/2 - (r - x*y)) *	   For better accuracy when x > 0.3, let qx = |x|/4 with *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. *	   Then *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the *	   magnitude of the latter is at least a quarter of x*x/2, *	   thus, reducing the rounding error in the subtraction. */#include "math.h"#include "math_private.h"#ifdef __STDC__static const double#elsestatic double#endifone =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */#ifdef __STDC__	double attribute_hidden __kernel_cos(double x, double y)#else	double attribute_hidden __kernel_cos(x, y)	double x,y;#endif{	double a,hz,z,r,qx;	int32_t ix;	GET_HIGH_WORD(ix,x);	ix &= 0x7fffffff;			/* ix = |x|'s high word*/	if(ix<0x3e400000) {			/* if x < 2**27 */	    if(((int)x)==0) return one;		/* generate inexact */	}	z  = x*x;	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */	    return one - (0.5*z - (z*r - x*y));	else {	    if(ix > 0x3fe90000) {		/* x > 0.78125 */		qx = 0.28125;	    } else {	        INSERT_WORDS(qx,ix-0x00200000,0);	/* x/4 */	    }	    hz = 0.5*z-qx;	    a  = one-qx;	    return a - (hz - (z*r-x*y));	}}
 |