| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488 | /* Copyright (C) 2002-2007, 2008 Free Software Foundation, Inc.   This file is part of the GNU C Library.   Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  */#include <assert.h>#include <errno.h>#include <time.h>#include "pthreadP.h"#include <lowlevellock.h>#include <not-cancel.h>/* We need to build this function with optimization to avoid * lll_timedlock erroring out with * error: can't find a register in class ‘GENERAL_REGS’ while reloading ‘asm’ */intattribute_optimize("Os")pthread_mutex_timedlock (     pthread_mutex_t *mutex,     const struct timespec *abstime){  int oldval;  pid_t id = THREAD_GETMEM (THREAD_SELF, tid);  int result = 0;  /* We must not check ABSTIME here.  If the thread does not block     abstime must not be checked for a valid value.  */  switch (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex),			    PTHREAD_MUTEX_TIMED_NP))    {      /* Recursive mutex.  */    case PTHREAD_MUTEX_RECURSIVE_NP:      /* Check whether we already hold the mutex.  */      if (mutex->__data.__owner == id)	{	  /* Just bump the counter.  */	  if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))	    /* Overflow of the counter.  */	    return EAGAIN;	  ++mutex->__data.__count;	  goto out;	}      /* We have to get the mutex.  */      result = lll_timedlock (mutex->__data.__lock, abstime,			      PTHREAD_MUTEX_PSHARED (mutex));      if (result != 0)	goto out;      /* Only locked once so far.  */      mutex->__data.__count = 1;      break;      /* Error checking mutex.  */    case PTHREAD_MUTEX_ERRORCHECK_NP:      /* Check whether we already hold the mutex.  */      if (__builtin_expect (mutex->__data.__owner == id, 0))	return EDEADLK;      /* FALLTHROUGH */    case PTHREAD_MUTEX_TIMED_NP:    simple:      /* Normal mutex.  */      result = lll_timedlock (mutex->__data.__lock, abstime,			      PTHREAD_MUTEX_PSHARED (mutex));      break;    case PTHREAD_MUTEX_ADAPTIVE_NP:      if (! __is_smp)	goto simple;      if (lll_trylock (mutex->__data.__lock) != 0)	{	  int cnt = 0;	  int max_cnt = MIN (MAX_ADAPTIVE_COUNT,			     mutex->__data.__spins * 2 + 10);	  do	    {	      if (cnt++ >= max_cnt)		{		  result = lll_timedlock (mutex->__data.__lock, abstime,					  PTHREAD_MUTEX_PSHARED (mutex));		  break;		}#ifdef BUSY_WAIT_NOP	      BUSY_WAIT_NOP;#endif	    }	  while (lll_trylock (mutex->__data.__lock) != 0);	  mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;	}      break;    case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:    case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:    case PTHREAD_MUTEX_ROBUST_NORMAL_NP:    case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:      THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,		     &mutex->__data.__list.__next);      oldval = mutex->__data.__lock;      do	{	again:	  if ((oldval & FUTEX_OWNER_DIED) != 0)	    {	      /* The previous owner died.  Try locking the mutex.  */	      int newval = id | (oldval & FUTEX_WAITERS);	      newval		= atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,						       newval, oldval);	      if (newval != oldval)		{		  oldval = newval;		  goto again;		}	      /* We got the mutex.  */	      mutex->__data.__count = 1;	      /* But it is inconsistent unless marked otherwise.  */	      mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;	      ENQUEUE_MUTEX (mutex);	      THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);	      /* Note that we deliberately exit here.  If we fall		 through to the end of the function __nusers would be		 incremented which is not correct because the old		 owner has to be discounted.  */	      return EOWNERDEAD;	    }	  /* Check whether we already hold the mutex.  */	  if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0))	    {	      int kind = PTHREAD_MUTEX_TYPE (mutex);	      if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP)		{		  THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,				 NULL);		  return EDEADLK;		}	      if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP)		{		  THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,				 NULL);		  /* Just bump the counter.  */		  if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))		    /* Overflow of the counter.  */		    return EAGAIN;		  ++mutex->__data.__count;		  return 0;		}	    }	  result = lll_robust_timedlock (mutex->__data.__lock, abstime, id,					 PTHREAD_ROBUST_MUTEX_PSHARED (mutex));	  if (__builtin_expect (mutex->__data.__owner				== PTHREAD_MUTEX_NOTRECOVERABLE, 0))	    {	      /* This mutex is now not recoverable.  */	      mutex->__data.__count = 0;	      lll_unlock (mutex->__data.__lock,			  PTHREAD_ROBUST_MUTEX_PSHARED (mutex));	      THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);	      return ENOTRECOVERABLE;	    }	  if (result == ETIMEDOUT || result == EINVAL)	    goto out;	  oldval = result;	}      while ((oldval & FUTEX_OWNER_DIED) != 0);      mutex->__data.__count = 1;      ENQUEUE_MUTEX (mutex);      THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);      break;    case PTHREAD_MUTEX_PI_RECURSIVE_NP:    case PTHREAD_MUTEX_PI_ERRORCHECK_NP:    case PTHREAD_MUTEX_PI_NORMAL_NP:    case PTHREAD_MUTEX_PI_ADAPTIVE_NP:    case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:    case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:    case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:    case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:      {	int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;	int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP;	if (robust)	  /* Note: robust PI futexes are signaled by setting bit 0.  */	  THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,			 (void *) (((uintptr_t) &mutex->__data.__list.__next)				   | 1));	oldval = mutex->__data.__lock;	/* Check whether we already hold the mutex.  */	if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0))	  {	    if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)	      {		THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);		return EDEADLK;	      }	    if (kind == PTHREAD_MUTEX_RECURSIVE_NP)	      {		THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);		/* Just bump the counter.  */		if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))		  /* Overflow of the counter.  */		  return EAGAIN;		++mutex->__data.__count;		return 0;	      }	  }	oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,						      id, 0);	if (oldval != 0)	  {	    /* The mutex is locked.  The kernel will now take care of	       everything.  The timeout value must be a relative value.	       Convert it.  */	    int private = (robust			   ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)			   : PTHREAD_MUTEX_PSHARED (mutex));	    INTERNAL_SYSCALL_DECL (__err);	    int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,				      __lll_private_flag (FUTEX_LOCK_PI,							  private), 1,				      abstime);	    if (INTERNAL_SYSCALL_ERROR_P (e, __err))	      {		if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT)		  return ETIMEDOUT;		if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH		    || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK)		  {		    assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK			    || (kind != PTHREAD_MUTEX_ERRORCHECK_NP				&& kind != PTHREAD_MUTEX_RECURSIVE_NP));		    /* ESRCH can happen only for non-robust PI mutexes where		       the owner of the lock died.  */		    assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH			    || !robust);		    /* Delay the thread until the timeout is reached.		       Then return ETIMEDOUT.  */		    struct timespec reltime;		    struct timespec now;		    INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME,				      &now);		    reltime.tv_sec = abstime->tv_sec - now.tv_sec;		    reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec;		    if (reltime.tv_nsec < 0)		      {			reltime.tv_nsec += 1000000000;			--reltime.tv_sec;		      }		    if (reltime.tv_sec >= 0)		      while (nanosleep_not_cancel (&reltime, &reltime) != 0)			continue;		    return ETIMEDOUT;		  }		return INTERNAL_SYSCALL_ERRNO (e, __err);	      }	    oldval = mutex->__data.__lock;	    assert (robust || (oldval & FUTEX_OWNER_DIED) == 0);	  }	if (__builtin_expect (oldval & FUTEX_OWNER_DIED, 0))	  {	    atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED);	    /* We got the mutex.  */	    mutex->__data.__count = 1;	    /* But it is inconsistent unless marked otherwise.  */	    mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT;	    ENQUEUE_MUTEX_PI (mutex);	    THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);	    /* Note that we deliberately exit here.  If we fall	       through to the end of the function __nusers would be	       incremented which is not correct because the old owner	       has to be discounted.  */	    return EOWNERDEAD;	  }	if (robust	    && __builtin_expect (mutex->__data.__owner				 == PTHREAD_MUTEX_NOTRECOVERABLE, 0))	  {	    /* This mutex is now not recoverable.  */	    mutex->__data.__count = 0;	    INTERNAL_SYSCALL_DECL (__err);	    INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock,			      __lll_private_flag (FUTEX_UNLOCK_PI,						  PTHREAD_ROBUST_MUTEX_PSHARED (mutex)),			      0, 0);	    THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);	    return ENOTRECOVERABLE;	  }	mutex->__data.__count = 1;	if (robust)	  {	    ENQUEUE_MUTEX_PI (mutex);	    THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);	  }	}      break;    case PTHREAD_MUTEX_PP_RECURSIVE_NP:    case PTHREAD_MUTEX_PP_ERRORCHECK_NP:    case PTHREAD_MUTEX_PP_NORMAL_NP:    case PTHREAD_MUTEX_PP_ADAPTIVE_NP:      {	int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP;	oldval = mutex->__data.__lock;	/* Check whether we already hold the mutex.  */	if (mutex->__data.__owner == id)	  {	    if (kind == PTHREAD_MUTEX_ERRORCHECK_NP)	      return EDEADLK;	    if (kind == PTHREAD_MUTEX_RECURSIVE_NP)	      {		/* Just bump the counter.  */		if (__builtin_expect (mutex->__data.__count + 1 == 0, 0))		  /* Overflow of the counter.  */		  return EAGAIN;		++mutex->__data.__count;		return 0;	      }	  }	int oldprio = -1, ceilval;	do	  {	    int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK)			  >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;	    if (__pthread_current_priority () > ceiling)	      {		result = EINVAL;	      failpp:		if (oldprio != -1)		  __pthread_tpp_change_priority (oldprio, -1);		return result;	      }	    result = __pthread_tpp_change_priority (oldprio, ceiling);	    if (result)	      return result;	    ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT;	    oldprio = ceiling;	    oldval	      = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,						     ceilval | 1, ceilval);	    if (oldval == ceilval)	      break;	    do	      {		oldval		  = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,							 ceilval | 2,							 ceilval | 1);		if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval)		  break;		if (oldval != ceilval)		  {		    /* Reject invalid timeouts.  */		    if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)		      {			result = EINVAL;			goto failpp;		      }		    struct timeval tv;		    struct timespec rt;		    /* Get the current time.  */		    (void) gettimeofday (&tv, NULL);		    /* Compute relative timeout.  */		    rt.tv_sec = abstime->tv_sec - tv.tv_sec;		    rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000;		    if (rt.tv_nsec < 0)		      {			rt.tv_nsec += 1000000000;			--rt.tv_sec;		      }		    /* Already timed out?  */		    if (rt.tv_sec < 0)		      {			result = ETIMEDOUT;			goto failpp;		      }		    lll_futex_timed_wait (&mutex->__data.__lock,					  ceilval | 2, &rt,					  PTHREAD_MUTEX_PSHARED (mutex));		  }	      }	    while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock,							ceilval | 2, ceilval)		   != ceilval);	  }	while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval);	assert (mutex->__data.__owner == 0);	mutex->__data.__count = 1;      }      break;    default:      /* Correct code cannot set any other type.  */      return EINVAL;    }  if (result == 0)    {      /* Record the ownership.  */      mutex->__data.__owner = id;      ++mutex->__data.__nusers;    } out:  return result;}
 |