| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 | /* Machine-dependent software floating-point definitions.   Sparc userland (_Q_*) version.   Copyright (C) 1997,1998,1999, 2002, 2006 Free Software Foundation, Inc.   This file is part of the GNU C Library.   Contributed by Richard Henderson (rth@cygnus.com),		  Jakub Jelinek (jj@ultra.linux.cz) and		  David S. Miller (davem@redhat.com).   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  */#include <fpu_control.h>#include <stdlib.h>#define _FP_W_TYPE_SIZE		32#define _FP_W_TYPE		unsigned long#define _FP_WS_TYPE		signed long#define _FP_I_TYPE		long#define _FP_MUL_MEAT_S(R,X,Y)				\  _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)#define _FP_MUL_MEAT_D(R,X,Y)				\  _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)#define _FP_MUL_MEAT_Q(R,X,Y)				\  _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm)#define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_udiv(S,R,X,Y)#define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_2_udiv(D,R,X,Y)#define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_4_udiv(Q,R,X,Y)#define _FP_NANFRAC_S		((_FP_QNANBIT_S << 1) - 1)#define _FP_NANFRAC_D		((_FP_QNANBIT_D << 1) - 1), -1#define _FP_NANFRAC_Q		((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1#define _FP_NANSIGN_S		0#define _FP_NANSIGN_D		0#define _FP_NANSIGN_Q		0#define _FP_KEEPNANFRACP 1/* If one NaN is signaling and the other is not, * we choose that one, otherwise we choose X. *//* For _Qp_* and _Q_*, this should prefer X, for * CPU instruction emulation this should prefer Y. * (see SPAMv9 B.2.2 section). */#define _FP_CHOOSENAN(fs, wc, R, X, Y, OP)			\  do {								\    if ((_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)		\	&& !(_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs))	\      {								\	R##_s = Y##_s;						\	_FP_FRAC_COPY_##wc(R,Y);				\      }								\    else							\      {								\	R##_s = X##_s;						\	_FP_FRAC_COPY_##wc(R,X);				\      }								\    R##_c = FP_CLS_NAN;						\  } while (0)/* Some assembly to speed things up. */#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0)			\  __asm__ ("addcc %r7,%8,%2\n\	    addxcc %r5,%6,%1\n\	    addx %r3,%4,%0"						\	   : "=r" ((USItype)(r2)),					\	     "=&r" ((USItype)(r1)),					\	     "=&r" ((USItype)(r0))					\	   : "%rJ" ((USItype)(x2)),					\	     "rI" ((USItype)(y2)),					\	     "%rJ" ((USItype)(x1)),					\	     "rI" ((USItype)(y1)),					\	     "%rJ" ((USItype)(x0)),					\	     "rI" ((USItype)(y0))					\	   : "cc")#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0)			\  __asm__ ("subcc %r7,%8,%2\n\	    subxcc %r5,%6,%1\n\	    subx %r3,%4,%0"						\	   : "=r" ((USItype)(r2)),					\	     "=&r" ((USItype)(r1)),					\	     "=&r" ((USItype)(r0))					\	   : "%rJ" ((USItype)(x2)),					\	     "rI" ((USItype)(y2)),					\	     "%rJ" ((USItype)(x1)),					\	     "rI" ((USItype)(y1)),					\	     "%rJ" ((USItype)(x0)),					\	     "rI" ((USItype)(y0))					\	   : "cc")#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\  do {									\    /* We need to fool gcc,  as we need to pass more than 10		\       input/outputs.  */						\    register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2");		\    __asm__ __volatile__ ("\	    addcc %r8,%9,%1\n\	    addxcc %r6,%7,%0\n\	    addxcc %r4,%5,%%g2\n\	    addx %r2,%3,%%g1"						\	   : "=&r" ((USItype)(r1)),					\	     "=&r" ((USItype)(r0))					\	   : "%rJ" ((USItype)(x3)),					\	     "rI" ((USItype)(y3)),					\	     "%rJ" ((USItype)(x2)),					\	     "rI" ((USItype)(y2)),					\	     "%rJ" ((USItype)(x1)),					\	     "rI" ((USItype)(y1)),					\	     "%rJ" ((USItype)(x0)),					\	     "rI" ((USItype)(y0))					\	   : "cc", "g1", "g2");						\    __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2));			\    r3 = _t1; r2 = _t2;							\  } while (0)#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\  do {									\    /* We need to fool gcc,  as we need to pass more than 10		\       input/outputs.  */						\    register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2");		\    __asm__ __volatile__ ("\	    subcc %r8,%9,%1\n\	    subxcc %r6,%7,%0\n\	    subxcc %r4,%5,%%g2\n\	    subx %r2,%3,%%g1"						\	   : "=&r" ((USItype)(r1)),					\	     "=&r" ((USItype)(r0))					\	   : "%rJ" ((USItype)(x3)),					\	     "rI" ((USItype)(y3)),					\	     "%rJ" ((USItype)(x2)),					\	     "rI" ((USItype)(y2)),					\	     "%rJ" ((USItype)(x1)),					\	     "rI" ((USItype)(y1)),					\	     "%rJ" ((USItype)(x0)),					\	     "rI" ((USItype)(y0))					\	   : "cc", "g1", "g2");						\    __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2));			\    r3 = _t1; r2 = _t2;							\  } while (0)#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) __FP_FRAC_SUB_3(x2,x1,x0,x2,x1,x0,y2,y1,y0)#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) __FP_FRAC_SUB_4(x3,x2,x1,x0,x3,x2,x1,x0,y3,y2,y1,y0)#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i)					\  __asm__ ("addcc %3,%4,%3\n\	    addxcc %2,%%g0,%2\n\	    addxcc %1,%%g0,%1\n\	    addx %0,%%g0,%0"						\	   : "=&r" ((USItype)(x3)),					\	     "=&r" ((USItype)(x2)),					\	     "=&r" ((USItype)(x1)),					\	     "=&r" ((USItype)(x0))					\	   : "rI" ((USItype)(i)),					\	     "0" ((USItype)(x3)),					\	     "1" ((USItype)(x2)),					\	     "2" ((USItype)(x1)),					\	     "3" ((USItype)(x0))					\	   : "cc")/* Obtain the current rounding mode. */#ifndef FP_ROUNDMODE#define FP_ROUNDMODE	((_fcw >> 30) & 0x3)#endif/* Exception flags. */#define FP_EX_INVALID		(1 << 4)#define FP_EX_OVERFLOW		(1 << 3)#define FP_EX_UNDERFLOW		(1 << 2)#define FP_EX_DIVZERO		(1 << 1)#define FP_EX_INEXACT		(1 << 0)#define _FP_DECL_EX	fpu_control_t _fcw#ifdef __UCLIBC_HAS_FPU__#define FP_INIT_ROUNDMODE					\do {								\  _FPU_GETCW(_fcw);						\} while (0)/* Simulate exceptions using double arithmetics. */extern double ___Q_simulate_exceptions(int exc);#define FP_HANDLE_EXCEPTIONS					\do {								\  if (!_fex)							\    {								\      /* This is the common case, so we do it inline.		\       * We need to clear cexc bits if any.			\       */							\      extern unsigned long long ___Q_numbers[];			\      __asm__ __volatile__("\      	ldd [%0], %%f30\n\      	faddd %%f30, %%f30, %%f30\      	" : : "r" (___Q_numbers) : "f30");			\    }								\  else								\    ___Q_simulate_exceptions (_fex);			        \} while (0)#endif
 |