des.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /*
  2. * FreeSec: libcrypt for NetBSD
  3. *
  4. * Copyright (c) 1994 David Burren
  5. * All rights reserved.
  6. *
  7. * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
  8. * this file should now *only* export crypt(), in order to make
  9. * binaries of libcrypt exportable from the USA
  10. *
  11. * Adapted for FreeBSD-4.0 by Mark R V Murray
  12. * this file should now *only* export crypt_des(), in order to make
  13. * a module that can be optionally included in libcrypt.
  14. *
  15. * Redistribution and use in source and binary forms, with or without
  16. * modification, are permitted provided that the following conditions
  17. * are met:
  18. * 1. Redistributions of source code must retain the above copyright
  19. * notice, this list of conditions and the following disclaimer.
  20. * 2. Redistributions in binary form must reproduce the above copyright
  21. * notice, this list of conditions and the following disclaimer in the
  22. * documentation and/or other materials provided with the distribution.
  23. * 3. Neither the name of the author nor the names of other contributors
  24. * may be used to endorse or promote products derived from this software
  25. * without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  28. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  29. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  30. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  31. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  32. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  33. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  34. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  35. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  36. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  37. * SUCH DAMAGE.
  38. *
  39. * This is an original implementation of the DES and the crypt(3) interfaces
  40. * by David Burren <davidb@werj.com.au>.
  41. *
  42. * An excellent reference on the underlying algorithm (and related
  43. * algorithms) is:
  44. *
  45. * B. Schneier, Applied Cryptography: protocols, algorithms,
  46. * and source code in C, John Wiley & Sons, 1994.
  47. *
  48. * Note that in that book's description of DES the lookups for the initial,
  49. * pbox, and final permutations are inverted (this has been brought to the
  50. * attention of the author). A list of errata for this book has been
  51. * posted to the sci.crypt newsgroup by the author and is available for FTP.
  52. *
  53. * ARCHITECTURE ASSUMPTIONS:
  54. * It is assumed that the 8-byte arrays passed by reference can be
  55. * addressed as arrays of u_int32_t's (ie. the CPU is not picky about
  56. * alignment).
  57. */
  58. #define __FORCE_GLIBC
  59. #include <sys/cdefs.h>
  60. #include <sys/types.h>
  61. #include <sys/param.h>
  62. #include <netinet/in.h>
  63. #include <pwd.h>
  64. #include <string.h>
  65. #include <crypt.h>
  66. #include "libcrypt.h"
  67. /* Re-entrantify me -- all this junk needs to be in
  68. * struct crypt_data to make this really reentrant... */
  69. static u_char inv_key_perm[64];
  70. static u_char inv_comp_perm[56];
  71. static u_char un_pbox[32];
  72. static u_int32_t en_keysl[16], en_keysr[16];
  73. static u_int32_t de_keysl[16], de_keysr[16];
  74. static u_int32_t ip_maskl[8][256], ip_maskr[8][256];
  75. static u_int32_t fp_maskl[8][256], fp_maskr[8][256];
  76. static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
  77. static u_int32_t comp_maskl[8][128], comp_maskr[8][128];
  78. static u_int32_t saltbits;
  79. static u_int32_t old_salt;
  80. static u_int32_t old_rawkey0, old_rawkey1;
  81. /* Static stuff that stays resident and doesn't change after
  82. * being initialized, and therefore doesn't need to be made
  83. * reentrant. */
  84. static u_char init_perm[64], final_perm[64];
  85. static u_char m_sbox[4][4096];
  86. static u_int32_t psbox[4][256];
  87. /* A pile of data */
  88. static const u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  89. static const u_char IP[64] = {
  90. 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
  91. 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
  92. 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
  93. 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
  94. };
  95. static const u_char key_perm[56] = {
  96. 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
  97. 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
  98. 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
  99. 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
  100. };
  101. static const u_char key_shifts[16] = {
  102. 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
  103. };
  104. static const u_char comp_perm[48] = {
  105. 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
  106. 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
  107. 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
  108. 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
  109. };
  110. /*
  111. * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
  112. */
  113. static const u_char sbox[8][64] = {
  114. {
  115. 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
  116. 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
  117. 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
  118. 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
  119. },
  120. {
  121. 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
  122. 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
  123. 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
  124. 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
  125. },
  126. {
  127. 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
  128. 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
  129. 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
  130. 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
  131. },
  132. {
  133. 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
  134. 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
  135. 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
  136. 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
  137. },
  138. {
  139. 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
  140. 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
  141. 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
  142. 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
  143. },
  144. {
  145. 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
  146. 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
  147. 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
  148. 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
  149. },
  150. {
  151. 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
  152. 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
  153. 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
  154. 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
  155. },
  156. {
  157. 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
  158. 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
  159. 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
  160. 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
  161. }
  162. };
  163. static const u_char pbox[32] = {
  164. 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
  165. 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
  166. };
  167. static const u_int32_t bits32[32] =
  168. {
  169. 0x80000000, 0x40000000, 0x20000000, 0x10000000,
  170. 0x08000000, 0x04000000, 0x02000000, 0x01000000,
  171. 0x00800000, 0x00400000, 0x00200000, 0x00100000,
  172. 0x00080000, 0x00040000, 0x00020000, 0x00010000,
  173. 0x00008000, 0x00004000, 0x00002000, 0x00001000,
  174. 0x00000800, 0x00000400, 0x00000200, 0x00000100,
  175. 0x00000080, 0x00000040, 0x00000020, 0x00000010,
  176. 0x00000008, 0x00000004, 0x00000002, 0x00000001
  177. };
  178. static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
  179. static int
  180. ascii_to_bin(char ch)
  181. {
  182. if (ch > 'z')
  183. return(0);
  184. if (ch >= 'a')
  185. return(ch - 'a' + 38);
  186. if (ch > 'Z')
  187. return(0);
  188. if (ch >= 'A')
  189. return(ch - 'A' + 12);
  190. if (ch > '9')
  191. return(0);
  192. if (ch >= '.')
  193. return(ch - '.');
  194. return(0);
  195. }
  196. static void
  197. des_init(void)
  198. {
  199. static int des_initialised = 0;
  200. int i, j, b, k, inbit, obit;
  201. u_int32_t *p, *il, *ir, *fl, *fr;
  202. const u_int32_t *bits28, *bits24;
  203. u_char u_sbox[8][64];
  204. if (des_initialised==1)
  205. return;
  206. old_rawkey0 = old_rawkey1 = 0L;
  207. saltbits = 0L;
  208. old_salt = 0L;
  209. bits24 = (bits28 = bits32 + 4) + 4;
  210. /*
  211. * Invert the S-boxes, reordering the input bits.
  212. */
  213. for (i = 0; i < 8; i++)
  214. for (j = 0; j < 64; j++) {
  215. b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
  216. u_sbox[i][j] = sbox[i][b];
  217. }
  218. /*
  219. * Convert the inverted S-boxes into 4 arrays of 8 bits.
  220. * Each will handle 12 bits of the S-box input.
  221. */
  222. for (b = 0; b < 4; b++)
  223. for (i = 0; i < 64; i++)
  224. for (j = 0; j < 64; j++)
  225. m_sbox[b][(i << 6) | j] =
  226. (u_char)((u_sbox[(b << 1)][i] << 4) |
  227. u_sbox[(b << 1) + 1][j]);
  228. /*
  229. * Set up the initial & final permutations into a useful form, and
  230. * initialise the inverted key permutation.
  231. */
  232. for (i = 0; i < 64; i++) {
  233. init_perm[final_perm[i] = IP[i] - 1] = (u_char)i;
  234. inv_key_perm[i] = 255;
  235. }
  236. /*
  237. * Invert the key permutation and initialise the inverted key
  238. * compression permutation.
  239. */
  240. for (i = 0; i < 56; i++) {
  241. inv_key_perm[key_perm[i] - 1] = (u_char)i;
  242. inv_comp_perm[i] = 255;
  243. }
  244. /*
  245. * Invert the key compression permutation.
  246. */
  247. for (i = 0; i < 48; i++) {
  248. inv_comp_perm[comp_perm[i] - 1] = (u_char)i;
  249. }
  250. /*
  251. * Set up the OR-mask arrays for the initial and final permutations,
  252. * and for the key initial and compression permutations.
  253. */
  254. for (k = 0; k < 8; k++) {
  255. for (i = 0; i < 256; i++) {
  256. *(il = &ip_maskl[k][i]) = 0L;
  257. *(ir = &ip_maskr[k][i]) = 0L;
  258. *(fl = &fp_maskl[k][i]) = 0L;
  259. *(fr = &fp_maskr[k][i]) = 0L;
  260. for (j = 0; j < 8; j++) {
  261. inbit = 8 * k + j;
  262. if (i & bits8[j]) {
  263. if ((obit = init_perm[inbit]) < 32)
  264. *il |= bits32[obit];
  265. else
  266. *ir |= bits32[obit-32];
  267. if ((obit = final_perm[inbit]) < 32)
  268. *fl |= bits32[obit];
  269. else
  270. *fr |= bits32[obit - 32];
  271. }
  272. }
  273. }
  274. for (i = 0; i < 128; i++) {
  275. *(il = &key_perm_maskl[k][i]) = 0L;
  276. *(ir = &key_perm_maskr[k][i]) = 0L;
  277. for (j = 0; j < 7; j++) {
  278. inbit = 8 * k + j;
  279. if (i & bits8[j + 1]) {
  280. if ((obit = inv_key_perm[inbit]) == 255)
  281. continue;
  282. if (obit < 28)
  283. *il |= bits28[obit];
  284. else
  285. *ir |= bits28[obit - 28];
  286. }
  287. }
  288. *(il = &comp_maskl[k][i]) = 0L;
  289. *(ir = &comp_maskr[k][i]) = 0L;
  290. for (j = 0; j < 7; j++) {
  291. inbit = 7 * k + j;
  292. if (i & bits8[j + 1]) {
  293. if ((obit=inv_comp_perm[inbit]) == 255)
  294. continue;
  295. if (obit < 24)
  296. *il |= bits24[obit];
  297. else
  298. *ir |= bits24[obit - 24];
  299. }
  300. }
  301. }
  302. }
  303. /*
  304. * Invert the P-box permutation, and convert into OR-masks for
  305. * handling the output of the S-box arrays setup above.
  306. */
  307. for (i = 0; i < 32; i++)
  308. un_pbox[pbox[i] - 1] = (u_char)i;
  309. for (b = 0; b < 4; b++)
  310. for (i = 0; i < 256; i++) {
  311. *(p = &psbox[b][i]) = 0L;
  312. for (j = 0; j < 8; j++) {
  313. if (i & bits8[j])
  314. *p |= bits32[un_pbox[8 * b + j]];
  315. }
  316. }
  317. des_initialised = 1;
  318. }
  319. static void
  320. setup_salt(u_int32_t salt)
  321. {
  322. u_int32_t obit, saltbit;
  323. int i;
  324. if (salt == old_salt)
  325. return;
  326. old_salt = salt;
  327. saltbits = 0L;
  328. saltbit = 1;
  329. obit = 0x800000;
  330. for (i = 0; i < 24; i++) {
  331. if (salt & saltbit)
  332. saltbits |= obit;
  333. saltbit <<= 1;
  334. obit >>= 1;
  335. }
  336. }
  337. static void
  338. des_setkey(const char *key)
  339. {
  340. u_int32_t k0, k1, rawkey0, rawkey1;
  341. int shifts, round;
  342. des_init();
  343. rawkey0 = ntohl(*(const u_int32_t *) key);
  344. rawkey1 = ntohl(*(const u_int32_t *) (key + 4));
  345. if ((rawkey0 | rawkey1)
  346. && rawkey0 == old_rawkey0
  347. && rawkey1 == old_rawkey1) {
  348. /*
  349. * Already setup for this key.
  350. * This optimisation fails on a zero key (which is weak and
  351. * has bad parity anyway) in order to simplify the starting
  352. * conditions.
  353. */
  354. return;
  355. }
  356. old_rawkey0 = rawkey0;
  357. old_rawkey1 = rawkey1;
  358. /*
  359. * Do key permutation and split into two 28-bit subkeys.
  360. */
  361. k0 = key_perm_maskl[0][rawkey0 >> 25]
  362. | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
  363. | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
  364. | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
  365. | key_perm_maskl[4][rawkey1 >> 25]
  366. | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
  367. | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
  368. | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
  369. k1 = key_perm_maskr[0][rawkey0 >> 25]
  370. | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
  371. | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
  372. | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
  373. | key_perm_maskr[4][rawkey1 >> 25]
  374. | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
  375. | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
  376. | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
  377. /*
  378. * Rotate subkeys and do compression permutation.
  379. */
  380. shifts = 0;
  381. for (round = 0; round < 16; round++) {
  382. u_int32_t t0, t1;
  383. shifts += key_shifts[round];
  384. t0 = (k0 << shifts) | (k0 >> (28 - shifts));
  385. t1 = (k1 << shifts) | (k1 >> (28 - shifts));
  386. de_keysl[15 - round] =
  387. en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
  388. | comp_maskl[1][(t0 >> 14) & 0x7f]
  389. | comp_maskl[2][(t0 >> 7) & 0x7f]
  390. | comp_maskl[3][t0 & 0x7f]
  391. | comp_maskl[4][(t1 >> 21) & 0x7f]
  392. | comp_maskl[5][(t1 >> 14) & 0x7f]
  393. | comp_maskl[6][(t1 >> 7) & 0x7f]
  394. | comp_maskl[7][t1 & 0x7f];
  395. de_keysr[15 - round] =
  396. en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
  397. | comp_maskr[1][(t0 >> 14) & 0x7f]
  398. | comp_maskr[2][(t0 >> 7) & 0x7f]
  399. | comp_maskr[3][t0 & 0x7f]
  400. | comp_maskr[4][(t1 >> 21) & 0x7f]
  401. | comp_maskr[5][(t1 >> 14) & 0x7f]
  402. | comp_maskr[6][(t1 >> 7) & 0x7f]
  403. | comp_maskr[7][t1 & 0x7f];
  404. }
  405. }
  406. static int
  407. do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count)
  408. {
  409. /*
  410. * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
  411. */
  412. u_int32_t l, r, *kl, *kr, *kl1, *kr1;
  413. u_int32_t f, r48l, r48r;
  414. int round;
  415. if (count == 0) {
  416. return(1);
  417. } else if (count > 0) {
  418. /*
  419. * Encrypting
  420. */
  421. kl1 = en_keysl;
  422. kr1 = en_keysr;
  423. } else {
  424. /*
  425. * Decrypting
  426. */
  427. count = -count;
  428. kl1 = de_keysl;
  429. kr1 = de_keysr;
  430. }
  431. /*
  432. * Do initial permutation (IP).
  433. */
  434. l = ip_maskl[0][l_in >> 24]
  435. | ip_maskl[1][(l_in >> 16) & 0xff]
  436. | ip_maskl[2][(l_in >> 8) & 0xff]
  437. | ip_maskl[3][l_in & 0xff]
  438. | ip_maskl[4][r_in >> 24]
  439. | ip_maskl[5][(r_in >> 16) & 0xff]
  440. | ip_maskl[6][(r_in >> 8) & 0xff]
  441. | ip_maskl[7][r_in & 0xff];
  442. r = ip_maskr[0][l_in >> 24]
  443. | ip_maskr[1][(l_in >> 16) & 0xff]
  444. | ip_maskr[2][(l_in >> 8) & 0xff]
  445. | ip_maskr[3][l_in & 0xff]
  446. | ip_maskr[4][r_in >> 24]
  447. | ip_maskr[5][(r_in >> 16) & 0xff]
  448. | ip_maskr[6][(r_in >> 8) & 0xff]
  449. | ip_maskr[7][r_in & 0xff];
  450. while (count--) {
  451. /*
  452. * Do each round.
  453. */
  454. kl = kl1;
  455. kr = kr1;
  456. round = 16;
  457. while (round--) {
  458. /*
  459. * Expand R to 48 bits (simulate the E-box).
  460. */
  461. r48l = ((r & 0x00000001) << 23)
  462. | ((r & 0xf8000000) >> 9)
  463. | ((r & 0x1f800000) >> 11)
  464. | ((r & 0x01f80000) >> 13)
  465. | ((r & 0x001f8000) >> 15);
  466. r48r = ((r & 0x0001f800) << 7)
  467. | ((r & 0x00001f80) << 5)
  468. | ((r & 0x000001f8) << 3)
  469. | ((r & 0x0000001f) << 1)
  470. | ((r & 0x80000000) >> 31);
  471. /*
  472. * Do salting for crypt() and friends, and
  473. * XOR with the permuted key.
  474. */
  475. f = (r48l ^ r48r) & saltbits;
  476. r48l ^= f ^ *kl++;
  477. r48r ^= f ^ *kr++;
  478. /*
  479. * Do sbox lookups (which shrink it back to 32 bits)
  480. * and do the pbox permutation at the same time.
  481. */
  482. f = psbox[0][m_sbox[0][r48l >> 12]]
  483. | psbox[1][m_sbox[1][r48l & 0xfff]]
  484. | psbox[2][m_sbox[2][r48r >> 12]]
  485. | psbox[3][m_sbox[3][r48r & 0xfff]];
  486. /*
  487. * Now that we've permuted things, complete f().
  488. */
  489. f ^= l;
  490. l = r;
  491. r = f;
  492. }
  493. r = l;
  494. l = f;
  495. }
  496. /*
  497. * Do final permutation (inverse of IP).
  498. */
  499. *l_out = fp_maskl[0][l >> 24]
  500. | fp_maskl[1][(l >> 16) & 0xff]
  501. | fp_maskl[2][(l >> 8) & 0xff]
  502. | fp_maskl[3][l & 0xff]
  503. | fp_maskl[4][r >> 24]
  504. | fp_maskl[5][(r >> 16) & 0xff]
  505. | fp_maskl[6][(r >> 8) & 0xff]
  506. | fp_maskl[7][r & 0xff];
  507. *r_out = fp_maskr[0][l >> 24]
  508. | fp_maskr[1][(l >> 16) & 0xff]
  509. | fp_maskr[2][(l >> 8) & 0xff]
  510. | fp_maskr[3][l & 0xff]
  511. | fp_maskr[4][r >> 24]
  512. | fp_maskr[5][(r >> 16) & 0xff]
  513. | fp_maskr[6][(r >> 8) & 0xff]
  514. | fp_maskr[7][r & 0xff];
  515. return(0);
  516. }
  517. #if 0
  518. static int
  519. des_cipher(const char *in, char *out, u_int32_t salt, int count)
  520. {
  521. u_int32_t l_out, r_out, rawl, rawr;
  522. int retval;
  523. union {
  524. u_int32_t *ui32;
  525. const char *c;
  526. } trans;
  527. des_init();
  528. setup_salt(salt);
  529. trans.c = in;
  530. rawl = ntohl(*trans.ui32++);
  531. rawr = ntohl(*trans.ui32);
  532. retval = do_des(rawl, rawr, &l_out, &r_out, count);
  533. trans.c = out;
  534. *trans.ui32++ = htonl(l_out);
  535. *trans.ui32 = htonl(r_out);
  536. return(retval);
  537. }
  538. #endif
  539. void
  540. setkey(const char *key)
  541. {
  542. int i, j;
  543. u_int32_t packed_keys[2];
  544. u_char *p;
  545. p = (u_char *) packed_keys;
  546. for (i = 0; i < 8; i++) {
  547. p[i] = 0;
  548. for (j = 0; j < 8; j++)
  549. if (*key++ & 1)
  550. p[i] |= bits8[j];
  551. }
  552. des_setkey((char *)p);
  553. }
  554. void
  555. encrypt(char *block, int flag)
  556. {
  557. u_int32_t io[2];
  558. u_char *p;
  559. int i, j;
  560. des_init();
  561. setup_salt(0L);
  562. p = (u_char*)block;
  563. for (i = 0; i < 2; i++) {
  564. io[i] = 0L;
  565. for (j = 0; j < 32; j++)
  566. if (*p++ & 1)
  567. io[i] |= bits32[j];
  568. }
  569. do_des(io[0], io[1], io, io + 1, flag ? -1 : 1);
  570. for (i = 0; i < 2; i++)
  571. for (j = 0; j < 32; j++)
  572. block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;
  573. }
  574. char *__des_crypt(const unsigned char *key, const unsigned char *setting)
  575. {
  576. u_int32_t count, salt, l, r0, r1, keybuf[2];
  577. u_char *p, *q;
  578. static char output[21];
  579. des_init();
  580. /*
  581. * Copy the key, shifting each character up by one bit
  582. * and padding with zeros.
  583. */
  584. q = (u_char *)keybuf;
  585. while (q - (u_char *)keybuf - 8) {
  586. *q++ = *key << 1;
  587. if (*(q - 1))
  588. key++;
  589. }
  590. des_setkey((char *)keybuf);
  591. #if 0
  592. if (*setting == _PASSWORD_EFMT1) {
  593. int i;
  594. /*
  595. * "new"-style:
  596. * setting - underscore, 4 bytes of count, 4 bytes of salt
  597. * key - unlimited characters
  598. */
  599. for (i = 1, count = 0L; i < 5; i++)
  600. count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
  601. for (i = 5, salt = 0L; i < 9; i++)
  602. salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
  603. while (*key) {
  604. /*
  605. * Encrypt the key with itself.
  606. */
  607. if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1))
  608. return(NULL);
  609. /*
  610. * And XOR with the next 8 characters of the key.
  611. */
  612. q = (u_char *)keybuf;
  613. while (q - (u_char *)keybuf - 8 && *key)
  614. *q++ ^= *key++ << 1;
  615. des_setkey((char *)keybuf);
  616. }
  617. strncpy(output, setting, 9);
  618. /*
  619. * Double check that we weren't given a short setting.
  620. * If we were, the above code will probably have created
  621. * wierd values for count and salt, but we don't really care.
  622. * Just make sure the output string doesn't have an extra
  623. * NUL in it.
  624. */
  625. output[9] = '\0';
  626. p = (u_char *)output + strlen(output);
  627. } else
  628. #endif
  629. {
  630. /*
  631. * "old"-style:
  632. * setting - 2 bytes of salt
  633. * key - up to 8 characters
  634. */
  635. count = 25;
  636. salt = (ascii_to_bin(setting[1]) << 6)
  637. | ascii_to_bin(setting[0]);
  638. output[0] = setting[0];
  639. /*
  640. * If the encrypted password that the salt was extracted from
  641. * is only 1 character long, the salt will be corrupted. We
  642. * need to ensure that the output string doesn't have an extra
  643. * NUL in it!
  644. */
  645. output[1] = setting[1] ? setting[1] : output[0];
  646. p = (u_char *)output + 2;
  647. }
  648. setup_salt(salt);
  649. /*
  650. * Do it.
  651. */
  652. if (do_des(0L, 0L, &r0, &r1, (int)count))
  653. return(NULL);
  654. /*
  655. * Now encode the result...
  656. */
  657. l = (r0 >> 8);
  658. *p++ = ascii64[(l >> 18) & 0x3f];
  659. *p++ = ascii64[(l >> 12) & 0x3f];
  660. *p++ = ascii64[(l >> 6) & 0x3f];
  661. *p++ = ascii64[l & 0x3f];
  662. l = (r0 << 16) | ((r1 >> 16) & 0xffff);
  663. *p++ = ascii64[(l >> 18) & 0x3f];
  664. *p++ = ascii64[(l >> 12) & 0x3f];
  665. *p++ = ascii64[(l >> 6) & 0x3f];
  666. *p++ = ascii64[l & 0x3f];
  667. l = r1 << 2;
  668. *p++ = ascii64[(l >> 12) & 0x3f];
  669. *p++ = ascii64[(l >> 6) & 0x3f];
  670. *p++ = ascii64[l & 0x3f];
  671. *p = 0;
  672. return(output);
  673. }