e_log.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. /* @(#)e_log.c 5.1 93/09/24 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #if defined(LIBM_SCCS) && !defined(lint)
  13. static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
  14. #endif
  15. /* __ieee754_log(x)
  16. * Return the logrithm of x
  17. *
  18. * Method :
  19. * 1. Argument Reduction: find k and f such that
  20. * x = 2^k * (1+f),
  21. * where sqrt(2)/2 < 1+f < sqrt(2) .
  22. *
  23. * 2. Approximation of log(1+f).
  24. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  25. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  26. * = 2s + s*R
  27. * We use a special Reme algorithm on [0,0.1716] to generate
  28. * a polynomial of degree 14 to approximate R The maximum error
  29. * of this polynomial approximation is bounded by 2**-58.45. In
  30. * other words,
  31. * 2 4 6 8 10 12 14
  32. * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
  33. * (the values of Lg1 to Lg7 are listed in the program)
  34. * and
  35. * | 2 14 | -58.45
  36. * | Lg1*s +...+Lg7*s - R(z) | <= 2
  37. * | |
  38. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  39. * In order to guarantee error in log below 1ulp, we compute log
  40. * by
  41. * log(1+f) = f - s*(f - R) (if f is not too large)
  42. * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
  43. *
  44. * 3. Finally, log(x) = k*ln2 + log(1+f).
  45. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  46. * Here ln2 is split into two floating point number:
  47. * ln2_hi + ln2_lo,
  48. * where n*ln2_hi is always exact for |n| < 2000.
  49. *
  50. * Special cases:
  51. * log(x) is NaN with signal if x < 0 (including -INF) ;
  52. * log(+INF) is +INF; log(0) is -INF with signal;
  53. * log(NaN) is that NaN with no signal.
  54. *
  55. * Accuracy:
  56. * according to an error analysis, the error is always less than
  57. * 1 ulp (unit in the last place).
  58. *
  59. * Constants:
  60. * The hexadecimal values are the intended ones for the following
  61. * constants. The decimal values may be used, provided that the
  62. * compiler will convert from decimal to binary accurately enough
  63. * to produce the hexadecimal values shown.
  64. */
  65. #include "math.h"
  66. #include "math_private.h"
  67. #ifdef __STDC__
  68. static const double
  69. #else
  70. static double
  71. #endif
  72. ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
  73. ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
  74. two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
  75. Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  76. Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  77. Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  78. Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  79. Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  80. Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  81. Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  82. #ifdef __STDC__
  83. static const double zero = 0.0;
  84. #else
  85. static double zero = 0.0;
  86. #endif
  87. #ifdef __STDC__
  88. double attribute_hidden __ieee754_log(double x)
  89. #else
  90. double attribute_hidden __ieee754_log(x)
  91. double x;
  92. #endif
  93. {
  94. double hfsq,f,s,z,R,w,t1,t2,dk;
  95. int32_t k,hx,i,j;
  96. u_int32_t lx;
  97. EXTRACT_WORDS(hx,lx,x);
  98. k=0;
  99. if (hx < 0x00100000) { /* x < 2**-1022 */
  100. if (((hx&0x7fffffff)|lx)==0)
  101. return -two54/zero; /* log(+-0)=-inf */
  102. if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
  103. k -= 54; x *= two54; /* subnormal number, scale up x */
  104. GET_HIGH_WORD(hx,x);
  105. }
  106. if (hx >= 0x7ff00000) return x+x;
  107. k += (hx>>20)-1023;
  108. hx &= 0x000fffff;
  109. i = (hx+0x95f64)&0x100000;
  110. SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
  111. k += (i>>20);
  112. f = x-1.0;
  113. if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
  114. if(f==zero) {if(k==0) return zero; else {dk=(double)k;
  115. return dk*ln2_hi+dk*ln2_lo;}
  116. }
  117. R = f*f*(0.5-0.33333333333333333*f);
  118. if(k==0) return f-R; else {dk=(double)k;
  119. return dk*ln2_hi-((R-dk*ln2_lo)-f);}
  120. }
  121. s = f/(2.0+f);
  122. dk = (double)k;
  123. z = s*s;
  124. i = hx-0x6147a;
  125. w = z*z;
  126. j = 0x6b851-hx;
  127. t1= w*(Lg2+w*(Lg4+w*Lg6));
  128. t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  129. i |= j;
  130. R = t2+t1;
  131. if(i>0) {
  132. hfsq=0.5*f*f;
  133. if(k==0) return f-(hfsq-s*(hfsq+R)); else
  134. return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
  135. } else {
  136. if(k==0) return f-s*(f-R); else
  137. return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
  138. }
  139. }