| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 | /* w_jnl.c -- long double version of w_jn.c. * Conversion to long double by Ulrich Drepper, * Cygnus Support, drepper@cygnus.com. *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: $";#endif/* * wrapper jn(int n, double x), yn(int n, double x) * floating point Bessel's function of the 1st and 2nd kind * of order n * * Special cases: *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. * Note 2. About jn(n,x), yn(n,x) *	For n=0, j0(x) is called, *	for n=1, j1(x) is called, *	for n<x, forward recursion us used starting *	from values of j0(x) and j1(x). *	for n>x, a continued fraction approximation to *	j(n,x)/j(n-1,x) is evaluated and then backward *	recursion is used starting from a supposed value *	for j(n,x). The resulting value of j(0,x) is *	compared with the actual value to correct the *	supposed value of j(n,x). * *	yn(n,x) is similar in all respects, except *	that forward recursion is used for all *	values of n>1. * */#include <math.h>#include "math_private.h"#if !defined __NO_LONG_DOUBLE_MATH# ifndef __DO_XSI_MATH__long doublejnl(int n, long double x)	/* wrapper jnl */{#  if defined(__UCLIBC_HAS_FENV__)	long double z;	z = (long double) __ieee754_jn(n, (double) x);	if (_LIB_VERSION == _IEEE_	    || _LIB_VERSION == _POSIX_	    || isnan(x))	  return z;	if(fabsl(x)>X_TLOSS) {	    return __kernel_standard_l((double)n,x,238); /* jn(|x|>X_TLOSS,n) */	} else		return z;#  else	return (long double) __ieee754_jn(n, (double) x);#  endif /* __UCLIBC_HAS_FENV__ */}long doubleynl(int n, long double x)	/* wrapper ynl */{#  if defined(__UCLIBC_HAS_FENV__)	long double z;	z = (long double) __ieee754_yn(n,(double) x);	if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;        if(x <= 0.0){                if(x==0.0)                    /* d= -one/(x-x); */                    return __kernel_standard_l((double)n,x,212);                else                    /* d = zero/(x-x); */                    return __kernel_standard_l((double)n,x,213);        }	if(x>X_TLOSS && _LIB_VERSION != _POSIX_) {	    return __kernel_standard_l((double)n,x,239); /* yn(x>X_TLOSS,n) */	} else		return z;#  else	return (long double) __ieee754_yn(n,(double) x);#  endif /* __UCLIBC_HAS_FENV__ */}# endif /* __DO_XSI_MATH__ */#endif /* __NO_LONG_DOUBLE_MATH */
 |