| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400 | /* Optimized version of the standard memset() function.   This file is part of the GNU C Library.   Copyright (C) 2000, 2001, 2002, 2003 Free Software Foundation, Inc.   Contributed by Dan Pop for Itanium <Dan.Pop@cern.ch>.   Rewritten for McKinley by Sverre Jarp, HP Labs/CERN <Sverre.Jarp@cern.ch>   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, write to the Free   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA   02111-1307 USA.  *//* Return: dest   Inputs:        in0:    dest        in1:    value        in2:    count   The algorithm is fairly straightforward: set byte by byte until we   we get to a 16B-aligned address, then loop on 128 B chunks using an   early store as prefetching, then loop on 32B chucks, then clear remaining   words, finally clear remaining bytes.   Since a stf.spill f0 can store 16B in one go, we use this instruction   to get peak speed when value = 0.  */#include "sysdep.h"#undef ret#define dest		in0#define value		in1#define	cnt		in2#define tmp		r31#define save_lc		r30#define ptr0		r29#define ptr1		r28#define ptr2		r27#define ptr3		r26#define ptr9 		r24#define	loopcnt		r23#define linecnt		r22#define bytecnt		r21#define fvalue		f6// This routine uses only scratch predicate registers (p6 - p15)#define p_scr		p6			// default register for same-cycle branches#define p_nz		p7#define p_zr		p8#define p_unalgn	p9#define p_y		p11#define p_n		p12#define p_yy		p13#define p_nn		p14#define movi0		mov#define MIN1		15#define MIN1P1HALF	8#define LINE_SIZE	128#define LSIZE_SH        7			// shift amount#define PREF_AHEAD	8#define USE_FLP#if defined(USE_INT)#define store		st8#define myval           value#elif defined(USE_FLP)#define store		stf8#define myval		fvalue#endif.align	64ENTRY(memset){ .mmi	.prologue	alloc	tmp = ar.pfs, 3, 0, 0, 0	lfetch.nt1 [dest]	.save   ar.lc, save_lc	movi0	save_lc = ar.lc} { .mmi	.body	mov	ret0 = dest		// return value	cmp.ne	p_nz, p_zr = value, r0	// use stf.spill if value is zero	cmp.eq	p_scr, p0 = cnt, r0;; }{ .mmi	and	ptr2 = -(MIN1+1), dest	// aligned address	and	tmp = MIN1, dest	// prepare to check for alignment	tbit.nz p_y, p_n = dest, 0	// Do we have an odd address? (M_B_U)} { .mib	mov	ptr1 = dest	mux1	value = value, @brcst	// create 8 identical bytes in word(p_scr)	br.ret.dpnt.many rp		// return immediately if count = 0;; }{ .mib	cmp.ne	p_unalgn, p0 = tmp, r0} { .mib				// NB: # of bytes to move is 1 higher	sub	bytecnt = (MIN1+1), tmp	//     than loopcnt	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U);; }{ .mmi(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?;; }{ .mib(p_y)	add	cnt = -8, cnt(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?} { .mib(p_y)	st8	[ptr2] = value, -4(p_n)	add	ptr2 = 4, ptr2;; }{ .mib(p_yy)	add	cnt = -4, cnt(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?} { .mib(p_yy)	st4	[ptr2] = value, -2(p_nn)	add	ptr2 = 2, ptr2;; }{ .mmi	mov	tmp = LINE_SIZE+1		// for compare(p_y)	add	cnt = -2, cnt(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?} { .mmi	setf.sig fvalue=value			// transfer value to FLP side(p_y)	st2	[ptr2] = value, -1(p_n)	add	ptr2 = 1, ptr2;; }{ .mmi(p_yy)	st1	[ptr2] = value  	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?} { .mbb(p_yy)	add	cnt = -1, cnt(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few;; }{ .mib	nop.m 0	shr.u	linecnt = cnt, LSIZE_SH(p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill;; }#ifndef GAS_ALIGN_BREAKS_UNWIND_INFO	.align 32 // -------- //  L1A: store ahead into cache lines; fill later#endif{ .mmi	and	tmp = -(LINE_SIZE), cnt		// compute end of range	mov	ptr9 = ptr1			// used for prefetching	and	cnt = (LINE_SIZE-1), cnt	// remainder} { .mmi	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value;; }{ .mmi(p_scr)	add	loopcnt = -1, linecnt		// start of stores	add	ptr2 = 8, ptr1			// (beyond prefetch stores)	add	ptr1 = tmp, ptr1		// first address beyond total;; }						// range{ .mmi	add	tmp = -1, linecnt		// next loop count	movi0	ar.lc = loopcnt;; }.pref_l1a:{ .mib	store [ptr9] = myval, 128	// Do stores one cache line apart	nop.i	0	br.cloop.dptk.few .pref_l1a;; }{ .mmi	add	ptr0 = 16, ptr2		// Two stores in parallel	movi0	ar.lc = tmp;; }.l1ax: { .mmi	store [ptr2] = myval, 8	store [ptr0] = myval, 8 ;; } { .mmi	store [ptr2] = myval, 24	store [ptr0] = myval, 24 ;; } { .mmi	store [ptr2] = myval, 8	store [ptr0] = myval, 8 ;; } { .mmi	store [ptr2] = myval, 24	store [ptr0] = myval, 24 ;; } { .mmi	store [ptr2] = myval, 8	store [ptr0] = myval, 8 ;; } { .mmi	store [ptr2] = myval, 24	store [ptr0] = myval, 24 ;; } { .mmi	store [ptr2] = myval, 8	store [ptr0] = myval, 32 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching? ;; }{ .mmb	store [ptr2] = myval, 24(p_scr)	store [ptr9] = myval, 128	br.cloop.dptk.few .l1ax;; }{ .mbb	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?(p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3;; }#ifdef GAS_ALIGN_BREAKS_UNWIND_INFO	{ nop 0 }#else	.align 32#endif.l1b:	// ------------------ //  L1B: store ahead into cache lines; fill later{ .mmi	and	tmp = -(LINE_SIZE), cnt		// compute end of range	mov	ptr9 = ptr1			// used for prefetching	and	cnt = (LINE_SIZE-1), cnt	// remainder} { .mmi	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value;; }{ .mmi(p_scr)	add	loopcnt = -1, linecnt	add	ptr2 = 16, ptr1	// start of stores (beyond prefetch stores)	add	ptr1 = tmp, ptr1	// first address beyond total range;; }{ .mmi	add	tmp = -1, linecnt	// next loop count	movi0	ar.lc = loopcnt;; }.pref_l1b:{ .mib	stf.spill [ptr9] = f0, 128	// Do stores one cache line apart	nop.i   0	br.cloop.dptk.few .pref_l1b;; }{ .mmi	add	ptr0 = 16, ptr2		// Two stores in parallel	movi0	ar.lc = tmp;; }.l1bx: { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 32 ;; } { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 32 ;; } { .mmi	stf.spill [ptr2] = f0, 32	stf.spill [ptr0] = f0, 64 	cmp.lt	p_scr, p0 = ptr9, ptr1	// do we need more prefetching? ;; }{ .mmb	stf.spill [ptr2] = f0, 32(p_scr)	stf.spill [ptr9] = f0, 128	br.cloop.dptk.few .l1bx;; }{ .mib	cmp.gt  p_scr, p0 = 8, cnt	// just a few bytes left ?(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment;; }.fraction_of_line:{ .mib	add	ptr2 = 16, ptr1	shr.u	loopcnt = cnt, 5   	// loopcnt = cnt / 32;; }{ .mib	cmp.eq	p_scr, p0 = loopcnt, r0	add	loopcnt = -1, loopcnt(p_scr)	br.cond.dpnt.many store_words;; }{ .mib	and	cnt = 0x1f, cnt		// compute the remaining cnt	movi0   ar.lc = loopcnt;; }#ifndef GAS_ALIGN_BREAKS_UNWIND_INFO	.align 32#endif.l2:	// ---------------------------- //  L2A:  store 32B in 2 cycles{ .mmb	store	[ptr1] = myval, 8	store	[ptr2] = myval, 8;; } { .mmb	store	[ptr1] = myval, 24	store	[ptr2] = myval, 24	br.cloop.dptk.many .l2;; }store_words:{ .mib	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch;; }{ .mmi	store	[ptr1] = myval, 8		// store	cmp.le	p_y, p_n = 16, cnt		//	add	cnt = -8, cnt			// subtract;; }{ .mmi(p_y)	store	[ptr1] = myval, 8		// store(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt		//(p_y)	add	cnt = -8, cnt			// subtract;; }{ .mmi						// store(p_yy)	store	[ptr1] = myval, 8		//(p_yy)	add	cnt = -8, cnt			// subtract;; }.move_bytes_from_alignment:{ .mib	cmp.eq	p_scr, p0 = cnt, r0	tbit.nz.unc p_y, p0 = cnt, 2	// should we terminate with a st4 ?(p_scr)	br.cond.dpnt.few .restore_and_exit;; }{ .mib(p_y)	st4	[ptr1] = value, 4	tbit.nz.unc p_yy, p0 = cnt, 1	// should we terminate with a st2 ?;; }{ .mib(p_yy)	st2	[ptr1] = value, 2	tbit.nz.unc p_y, p0 = cnt, 0;; }{ .mib(p_y)	st1	[ptr1] = value;; }.restore_and_exit:{ .mib	nop.m	0	movi0	ar.lc = save_lc	br.ret.sptk.many rp;; }.move_bytes_unaligned:{ .mmi       .pred.rel "mutex",p_y, p_n       .pred.rel "mutex",p_yy, p_nn(p_n)	cmp.le  p_yy, p_nn = 4, cnt(p_y)	cmp.le  p_yy, p_nn = 5, cnt(p_n)	add	ptr2 = 2, ptr1} { .mmi(p_y)	add	ptr2 = 3, ptr1(p_y)	st1	[ptr1] = value, 1	// fill 1 (odd-aligned) byte(p_y)	add	cnt = -1, cnt		// [15, 14 (or less) left];; }{ .mmi(p_yy)	cmp.le.unc p_y, p0 = 8, cnt	add	ptr3 = ptr1, cnt	// prepare last store	movi0	ar.lc = save_lc} { .mmi(p_yy)	st2	[ptr1] = value, 4	// fill 2 (aligned) bytes(p_yy)	st2	[ptr2] = value, 4	// fill 2 (aligned) bytes(p_yy)	add	cnt = -4, cnt		// [11, 10 (o less) left];; }{ .mmi(p_y)	cmp.le.unc p_yy, p0 = 8, cnt	add	ptr3 = -1, ptr3		// last store	tbit.nz p_scr, p0 = cnt, 1	// will there be a st2 at the end ?} { .mmi(p_y)	st2	[ptr1] = value, 4	// fill 2 (aligned) bytes(p_y)	st2	[ptr2] = value, 4	// fill 2 (aligned) bytes(p_y)	add	cnt = -4, cnt		// [7, 6 (or less) left];; }{ .mmi(p_yy)	st2	[ptr1] = value, 4	// fill 2 (aligned) bytes(p_yy)	st2	[ptr2] = value, 4	// fill 2 (aligned) bytes					// [3, 2 (or less) left]	tbit.nz p_y, p0 = cnt, 0	// will there be a st1 at the end ?} { .mmi(p_yy)	add	cnt = -4, cnt;; }{ .mmb(p_scr)	st2	[ptr1] = value		// fill 2 (aligned) bytes(p_y)	st1	[ptr3] = value		// fill last byte (using ptr3)	br.ret.sptk.many rp;; }END(memset)libc_hidden_def (memset)
 |