123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- /* Software floating-point emulation.
- Basic one-word fraction declaration and manipulation.
- Copyright (C) 1997-2017 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Richard Henderson (rth@cygnus.com),
- Jakub Jelinek (jj@ultra.linux.cz),
- David S. Miller (davem@redhat.com) and
- Peter Maydell (pmaydell@chiark.greenend.org.uk).
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- In addition to the permissions in the GNU Lesser General Public
- License, the Free Software Foundation gives you unlimited
- permission to link the compiled version of this file into
- combinations with other programs, and to distribute those
- combinations without any restriction coming from the use of this
- file. (The Lesser General Public License restrictions do apply in
- other respects; for example, they cover modification of the file,
- and distribution when not linked into a combine executable.)
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
- #ifndef SOFT_FP_OP_1_H
- #define SOFT_FP_OP_1_H 1
- #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f _FP_ZERO_INIT
- #define _FP_FRAC_COPY_1(D, S) (D##_f = S##_f)
- #define _FP_FRAC_SET_1(X, I) (X##_f = I)
- #define _FP_FRAC_HIGH_1(X) (X##_f)
- #define _FP_FRAC_LOW_1(X) (X##_f)
- #define _FP_FRAC_WORD_1(X, w) (X##_f)
- #define _FP_FRAC_ADDI_1(X, I) (X##_f += I)
- #define _FP_FRAC_SLL_1(X, N) \
- do \
- { \
- if (__builtin_constant_p (N) && (N) == 1) \
- X##_f += X##_f; \
- else \
- X##_f <<= (N); \
- } \
- while (0)
- #define _FP_FRAC_SRL_1(X, N) (X##_f >>= N)
- /* Right shift with sticky-lsb. */
- #define _FP_FRAC_SRST_1(X, S, N, sz) __FP_FRAC_SRST_1 (X##_f, S, (N), (sz))
- #define _FP_FRAC_SRS_1(X, N, sz) __FP_FRAC_SRS_1 (X##_f, (N), (sz))
- #define __FP_FRAC_SRST_1(X, S, N, sz) \
- do \
- { \
- S = (__builtin_constant_p (N) && (N) == 1 \
- ? X & 1 \
- : (X << (_FP_W_TYPE_SIZE - (N))) != 0); \
- X = X >> (N); \
- } \
- while (0)
- #define __FP_FRAC_SRS_1(X, N, sz) \
- (X = (X >> (N) | (__builtin_constant_p (N) && (N) == 1 \
- ? X & 1 \
- : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
- #define _FP_FRAC_ADD_1(R, X, Y) (R##_f = X##_f + Y##_f)
- #define _FP_FRAC_SUB_1(R, X, Y) (R##_f = X##_f - Y##_f)
- #define _FP_FRAC_DEC_1(X, Y) (X##_f -= Y##_f)
- #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ ((z), X##_f)
- /* Predicates. */
- #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE) X##_f < 0)
- #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
- #define _FP_FRAC_OVERP_1(fs, X) (X##_f & _FP_OVERFLOW_##fs)
- #define _FP_FRAC_CLEAR_OVERP_1(fs, X) (X##_f &= ~_FP_OVERFLOW_##fs)
- #define _FP_FRAC_HIGHBIT_DW_1(fs, X) (X##_f & _FP_HIGHBIT_DW_##fs)
- #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
- #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
- #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
- #define _FP_ZEROFRAC_1 0
- #define _FP_MINFRAC_1 1
- #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE) 0)
- /* Unpack the raw bits of a native fp value. Do not classify or
- normalize the data. */
- #define _FP_UNPACK_RAW_1(fs, X, val) \
- do \
- { \
- union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo; \
- _FP_UNPACK_RAW_1_flo.flt = (val); \
- \
- X##_f = _FP_UNPACK_RAW_1_flo.bits.frac; \
- X##_e = _FP_UNPACK_RAW_1_flo.bits.exp; \
- X##_s = _FP_UNPACK_RAW_1_flo.bits.sign; \
- } \
- while (0)
- #define _FP_UNPACK_RAW_1_P(fs, X, val) \
- do \
- { \
- union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo \
- = (union _FP_UNION_##fs *) (val); \
- \
- X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac; \
- X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp; \
- X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign; \
- } \
- while (0)
- /* Repack the raw bits of a native fp value. */
- #define _FP_PACK_RAW_1(fs, val, X) \
- do \
- { \
- union _FP_UNION_##fs _FP_PACK_RAW_1_flo; \
- \
- _FP_PACK_RAW_1_flo.bits.frac = X##_f; \
- _FP_PACK_RAW_1_flo.bits.exp = X##_e; \
- _FP_PACK_RAW_1_flo.bits.sign = X##_s; \
- \
- (val) = _FP_PACK_RAW_1_flo.flt; \
- } \
- while (0)
- #define _FP_PACK_RAW_1_P(fs, val, X) \
- do \
- { \
- union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo \
- = (union _FP_UNION_##fs *) (val); \
- \
- _FP_PACK_RAW_1_P_flo->bits.frac = X##_f; \
- _FP_PACK_RAW_1_P_flo->bits.exp = X##_e; \
- _FP_PACK_RAW_1_P_flo->bits.sign = X##_s; \
- } \
- while (0)
- /* Multiplication algorithms: */
- /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
- multiplication immediately. */
- #define _FP_MUL_MEAT_DW_1_imm(wfracbits, R, X, Y) \
- do \
- { \
- R##_f = X##_f * Y##_f; \
- } \
- while (0)
- #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
- do \
- { \
- _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y); \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits)); \
- } \
- while (0)
- /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
- #define _FP_MUL_MEAT_DW_1_wide(wfracbits, R, X, Y, doit) \
- do \
- { \
- doit (R##_f1, R##_f0, X##_f, Y##_f); \
- } \
- while (0)
- #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
- do \
- { \
- _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z); \
- _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z, \
- X, Y, doit); \
- /* Normalize since we know where the msb of the multiplicands \
- were (bit B), we know that the msb of the of the product is \
- at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1, \
- 2*(wfracbits)); \
- R##_f = _FP_MUL_MEAT_1_wide_Z_f0; \
- } \
- while (0)
- /* Finally, a simple widening multiply algorithm. What fun! */
- #define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y) \
- do \
- { \
- _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl; \
- _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl; \
- _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a); \
- \
- /* Split the words in half. */ \
- _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
- _FP_MUL_MEAT_DW_1_hard_xl \
- = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
- _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
- _FP_MUL_MEAT_DW_1_hard_yl \
- = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
- \
- /* Multiply the pieces. */ \
- R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl; \
- _FP_MUL_MEAT_DW_1_hard_a_f0 \
- = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl; \
- _FP_MUL_MEAT_DW_1_hard_a_f1 \
- = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh; \
- R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh; \
- \
- /* Reassemble into two full words. */ \
- if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1) \
- < _FP_MUL_MEAT_DW_1_hard_a_f1) \
- R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2); \
- _FP_MUL_MEAT_DW_1_hard_a_f1 \
- = _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2); \
- _FP_MUL_MEAT_DW_1_hard_a_f0 \
- = _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2); \
- _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a); \
- } \
- while (0)
- #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
- do \
- { \
- _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z); \
- _FP_MUL_MEAT_DW_1_hard ((wfracbits), \
- _FP_MUL_MEAT_1_hard_z, X, Y); \
- \
- /* Normalize. */ \
- _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z, \
- (wfracbits) - 1, 2*(wfracbits)); \
- R##_f = _FP_MUL_MEAT_1_hard_z_f0; \
- } \
- while (0)
- /* Division algorithms: */
- /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
- division immediately. Give this macro either _FP_DIV_HELP_imm for
- C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
- choose will depend on what the compiler does with divrem4. */
- #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
- do \
- { \
- _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r; \
- X##_f <<= (X##_f < Y##_f \
- ? R##_e--, _FP_WFRACBITS_##fs \
- : _FP_WFRACBITS_##fs - 1); \
- doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f); \
- R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0); \
- } \
- while (0)
- /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
- that may be useful in this situation. This first is for a primitive
- that requires normalization, the second for one that does not. Look
- for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
- #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
- do \
- { \
- _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh; \
- _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl; \
- _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q; \
- _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r; \
- _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y; \
- \
- /* Normalize Y -- i.e. make the most significant bit set. */ \
- _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs; \
- \
- /* Shift X op correspondingly high, that is, up one full word. */ \
- if (X##_f < Y##_f) \
- { \
- R##_e--; \
- _FP_DIV_MEAT_1_udiv_norm_nl = 0; \
- _FP_DIV_MEAT_1_udiv_norm_nh = X##_f; \
- } \
- else \
- { \
- _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
- _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1; \
- } \
- \
- udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q, \
- _FP_DIV_MEAT_1_udiv_norm_r, \
- _FP_DIV_MEAT_1_udiv_norm_nh, \
- _FP_DIV_MEAT_1_udiv_norm_nl, \
- _FP_DIV_MEAT_1_udiv_norm_y); \
- R##_f = (_FP_DIV_MEAT_1_udiv_norm_q \
- | (_FP_DIV_MEAT_1_udiv_norm_r != 0)); \
- } \
- while (0)
- #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
- do \
- { \
- _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl; \
- _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r; \
- if (X##_f < Y##_f) \
- { \
- R##_e--; \
- _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs; \
- _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs; \
- } \
- else \
- { \
- _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
- _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
- } \
- udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r, \
- _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl, \
- Y##_f); \
- R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0); \
- } \
- while (0)
- /* Square root algorithms:
- We have just one right now, maybe Newton approximation
- should be added for those machines where division is fast. */
- #define _FP_SQRT_MEAT_1(R, S, T, X, q) \
- do \
- { \
- while ((q) != _FP_WORK_ROUND) \
- { \
- T##_f = S##_f + (q); \
- if (T##_f <= X##_f) \
- { \
- S##_f = T##_f + (q); \
- X##_f -= T##_f; \
- R##_f += (q); \
- } \
- _FP_FRAC_SLL_1 (X, 1); \
- (q) >>= 1; \
- } \
- if (X##_f) \
- { \
- if (S##_f < X##_f) \
- R##_f |= _FP_WORK_ROUND; \
- R##_f |= _FP_WORK_STICKY; \
- } \
- } \
- while (0)
- /* Assembly/disassembly for converting to/from integral types.
- No shifting or overflow handled here. */
- #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) ((r) = X##_f)
- #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = (r))
- /* Convert FP values between word sizes. */
- #define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f)
- #endif /* !SOFT_FP_OP_1_H */
|