123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- /* powi.c
- *
- * Real raised to integer power
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, powi();
- * int n;
- *
- * y = powi( x, n );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns argument x raised to the nth power.
- * The routine efficiently decomposes n as a sum of powers of
- * two. The desired power is a product of two-to-the-kth
- * powers of x. Thus to compute the 32767 power of x requires
- * 28 multiplications instead of 32767 multiplications.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Relative error:
- * arithmetic x domain n domain # trials peak rms
- * DEC .04,26 -26,26 100000 2.7e-16 4.3e-17
- * IEEE .04,26 -26,26 50000 2.0e-15 3.8e-16
- * IEEE 1,2 -1022,1023 50000 8.6e-14 1.6e-14
- *
- * Returns MAXNUM on overflow, zero on underflow.
- *
- */
- /* powi.c */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1995, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef ANSIPROT
- extern double log ( double );
- extern double frexp ( double, int * );
- extern int signbit ( double );
- #else
- double log(), frexp();
- int signbit();
- #endif
- extern double NEGZERO, INFINITY, MAXNUM, MAXLOG, MINLOG, LOGE2;
- double powi( x, nn )
- double x;
- int nn;
- {
- int n, e, sign, asign, lx;
- double w, y, s;
- /* See pow.c for these tests. */
- if( x == 0.0 )
- {
- if( nn == 0 )
- return( 1.0 );
- else if( nn < 0 )
- return( INFINITY );
- else
- {
- if( nn & 1 )
- return( x );
- else
- return( 0.0 );
- }
- }
- if( nn == 0 )
- return( 1.0 );
- if( nn == -1 )
- return( 1.0/x );
- if( x < 0.0 )
- {
- asign = -1;
- x = -x;
- }
- else
- asign = 0;
- if( nn < 0 )
- {
- sign = -1;
- n = -nn;
- }
- else
- {
- sign = 1;
- n = nn;
- }
- /* Even power will be positive. */
- if( (n & 1) == 0 )
- asign = 0;
- /* Overflow detection */
- /* Calculate approximate logarithm of answer */
- s = frexp( x, &lx );
- e = (lx - 1)*n;
- if( (e == 0) || (e > 64) || (e < -64) )
- {
- s = (s - 7.0710678118654752e-1) / (s + 7.0710678118654752e-1);
- s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2;
- }
- else
- {
- s = LOGE2 * e;
- }
- if( s > MAXLOG )
- {
- mtherr( "powi", OVERFLOW );
- y = INFINITY;
- goto done;
- }
- #if DENORMAL
- if( s < MINLOG )
- {
- y = 0.0;
- goto done;
- }
- /* Handle tiny denormal answer, but with less accuracy
- * since roundoff error in 1.0/x will be amplified.
- * The precise demarcation should be the gradual underflow threshold.
- */
- if( (s < (-MAXLOG+2.0)) && (sign < 0) )
- {
- x = 1.0/x;
- sign = -sign;
- }
- #else
- /* do not produce denormal answer */
- if( s < -MAXLOG )
- return(0.0);
- #endif
- /* First bit of the power */
- if( n & 1 )
- y = x;
-
- else
- y = 1.0;
- w = x;
- n >>= 1;
- while( n )
- {
- w = w * w; /* arg to the 2-to-the-kth power */
- if( n & 1 ) /* if that bit is set, then include in product */
- y *= w;
- n >>= 1;
- }
- if( sign < 0 )
- y = 1.0/y;
- done:
- if( asign )
- {
- /* odd power of negative number */
- if( y == 0.0 )
- y = NEGZERO;
- else
- y = -y;
- }
- return(y);
- }
|