12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- /* tanhf.c
- *
- * Hyperbolic tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, tanhf();
- *
- * y = tanhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic tangent of argument in the range MINLOG to
- * MAXLOG.
- *
- * A polynomial approximation is used for |x| < 0.625.
- * Otherwise,
- *
- * tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -2,2 100000 1.3e-7 2.6e-8
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- /* Single precision hyperbolic tangent
- * test interval: [-0.625, +0.625]
- * trials: 10000
- * peak relative error: 7.2e-8
- * rms relative error: 2.6e-8
- */
- #include <math.h>
- extern float MAXLOGF;
- float expf( float );
- float tanhf( float xx )
- {
- float x, z;
- if( xx < 0 )
- x = -xx;
- else
- x = xx;
- if( x > 0.5 * MAXLOGF )
- {
- if( xx > 0 )
- return( 1.0 );
- else
- return( -1.0 );
- }
- if( x >= 0.625 )
- {
- x = expf(x+x);
- z = 1.0 - 2.0/(x + 1.0);
- if( xx < 0 )
- z = -z;
- }
- else
- {
- z = x * x;
- z =
- (((( -5.70498872745E-3 * z
- + 2.06390887954E-2) * z
- - 5.37397155531E-2) * z
- + 1.33314422036E-1) * z
- - 3.33332819422E-1) * z * xx
- + xx;
- }
- return( z );
- }
|