| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 | /* Functions to compute SHA512 message digest of files or memory blocks.   according to the definition of SHA512 in FIPS 180-2.   Copyright (C) 2007 Free Software Foundation, Inc.   This file is part of the GNU C Library.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Lesser General Public   License as published by the Free Software Foundation; either   version 2.1 of the License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Lesser General Public License for more details.   You should have received a copy of the GNU Lesser General Public   License along with the GNU C Library; if not, see   <http://www.gnu.org/licenses/>.  *//* Written by Ulrich Drepper <drepper@redhat.com>, 2007.  */#ifdef HAVE_CONFIG_H# include <config.h>#endif#include <endian.h>#include <stdlib.h>#include <string.h>#include <sys/types.h>#include "sha512.h"#if __BYTE_ORDER == __LITTLE_ENDIAN# ifdef _LIBC#  include <byteswap.h>#  define SWAP(n) bswap_64 (n)# else#  define SWAP(n) \  (((n) << 56)					\   | (((n) & 0xff00) << 40)			\   | (((n) & 0xff0000) << 24)			\   | (((n) & 0xff000000) << 8)			\   | (((n) >> 8) & 0xff000000)			\   | (((n) >> 24) & 0xff0000)			\   | (((n) >> 40) & 0xff00)			\   | ((n) >> 56))# endif#else# define SWAP(n) (n)#endif/* This array contains the bytes used to pad the buffer to the next   64-byte boundary.  (FIPS 180-2:5.1.2)  */static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ...  */ };/* Constants for SHA512 from FIPS 180-2:4.2.3.  */static const uint64_t K[80] =  {    UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd),    UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc),    UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019),    UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118),    UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe),    UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2),    UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1),    UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694),    UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3),    UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65),    UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483),    UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5),    UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210),    UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4),    UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725),    UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70),    UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926),    UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df),    UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8),    UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b),    UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001),    UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30),    UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910),    UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8),    UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53),    UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8),    UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb),    UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3),    UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60),    UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec),    UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9),    UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b),    UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207),    UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178),    UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6),    UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b),    UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493),    UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c),    UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a),    UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817)  };/* Process LEN bytes of BUFFER, accumulating context into CTX.   It is assumed that LEN % 128 == 0.  */static voidsha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx){  const uint64_t *words = buffer;  size_t nwords = len / sizeof (uint64_t);  uint64_t a = ctx->H[0];  uint64_t b = ctx->H[1];  uint64_t c = ctx->H[2];  uint64_t d = ctx->H[3];  uint64_t e = ctx->H[4];  uint64_t f = ctx->H[5];  uint64_t g = ctx->H[6];  uint64_t h = ctx->H[7];  /* First increment the byte count.  FIPS 180-2 specifies the possible     length of the file up to 2^128 bits.  Here we only compute the     number of bytes.  Do a double word increment.  */  ctx->total[0] += len;  if (ctx->total[0] < len)    ++ctx->total[1];  /* Process all bytes in the buffer with 128 bytes in each round of     the loop.  */  while (nwords > 0)    {      uint64_t W[80];      uint64_t a_save = a;      uint64_t b_save = b;      uint64_t c_save = c;      uint64_t d_save = d;      uint64_t e_save = e;      uint64_t f_save = f;      uint64_t g_save = g;      uint64_t h_save = h;      /* Operators defined in FIPS 180-2:4.1.2.  */#define _Ch(x, y, z) ((x & y) ^ (~x & z))#define _Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))#define _S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39))#define _S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41))#define _R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7))#define _R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6))      /* It is unfortunate that C does not provide an operator for	 cyclic rotation.  Hope the C compiler is smart enough.  */#define CYCLIC(w, s) ((w >> s) | (w << (64 - s)))      /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2.  */      for (unsigned int t = 0; t < 16; ++t)	{	  W[t] = SWAP (*words);	  ++words;	}      for (unsigned int t = 16; t < 80; ++t)	W[t] = _R1 (W[t - 2]) + W[t - 7] + _R0 (W[t - 15]) + W[t - 16];      /* The actual computation according to FIPS 180-2:6.3.2 step 3.  */      for (unsigned int t = 0; t < 80; ++t)	{	  uint64_t T1 = h + _S1 (e) + _Ch (e, f, g) + K[t] + W[t];	  uint64_t T2 = _S0 (a) + _Maj (a, b, c);	  h = g;	  g = f;	  f = e;	  e = d + T1;	  d = c;	  c = b;	  b = a;	  a = T1 + T2;	}      /* Add the starting values of the context according to FIPS 180-2:6.3.2	 step 4.  */      a += a_save;      b += b_save;      c += c_save;      d += d_save;      e += e_save;      f += f_save;      g += g_save;      h += h_save;      /* Prepare for the next round.  */      nwords -= 16;    }  /* Put checksum in context given as argument.  */  ctx->H[0] = a;  ctx->H[1] = b;  ctx->H[2] = c;  ctx->H[3] = d;  ctx->H[4] = e;  ctx->H[5] = f;  ctx->H[6] = g;  ctx->H[7] = h;}/* Initialize structure containing state of computation.   (FIPS 180-2:5.3.3)  */void__sha512_init_ctx (struct sha512_ctx *ctx){  ctx->H[0] = UINT64_C (0x6a09e667f3bcc908);  ctx->H[1] = UINT64_C (0xbb67ae8584caa73b);  ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b);  ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1);  ctx->H[4] = UINT64_C (0x510e527fade682d1);  ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f);  ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b);  ctx->H[7] = UINT64_C (0x5be0cd19137e2179);  ctx->total[0] = ctx->total[1] = 0;  ctx->buflen = 0;}/* Process the remaining bytes in the internal buffer and the usual   prolog according to the standard and write the result to RESBUF.   IMPORTANT: On some systems it is required that RESBUF is correctly   aligned for a 32 bits value.  */void *__sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf){  /* Take yet unprocessed bytes into account.  */  uint64_t bytes = ctx->buflen;  size_t pad;  /* Now count remaining bytes.  */  ctx->total[0] += bytes;  if (ctx->total[0] < bytes)    ++ctx->total[1];  pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;  memcpy (&ctx->buffer[bytes], fillbuf, pad);  /* Put the 128-bit file length in *bits* at the end of the buffer.  */  *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP (ctx->total[0] << 3);  *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |						  (ctx->total[0] >> 61));  /* Process last bytes.  */  sha512_process_block (ctx->buffer, bytes + pad + 16, ctx);  /* Put result from CTX in first 64 bytes following RESBUF.  */  for (unsigned int i = 0; i < 8; ++i)    ((uint64_t *) resbuf)[i] = SWAP (ctx->H[i]);  return resbuf;}void__sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx){  /* When we already have some bits in our internal buffer concatenate     both inputs first.  */  if (ctx->buflen != 0)    {      size_t left_over = ctx->buflen;      size_t add = 256 - left_over > len ? len : 256 - left_over;      memcpy (&ctx->buffer[left_over], buffer, add);      ctx->buflen += add;      if (ctx->buflen > 128)	{	  sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);	  ctx->buflen &= 127;	  /* The regions in the following copy operation cannot overlap.  */	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127],		  ctx->buflen);	}      buffer = (const char *) buffer + add;      len -= add;    }  /* Process available complete blocks.  */  if (len >= 128)    {#if __GNUC__ >= 2# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0)#else# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0)#endif      if (UNALIGNED_P (buffer))	while (len > 128)	  {	    sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128,				    ctx);	    buffer = (const char *) buffer + 128;	    len -= 128;	  }      else	{	  sha512_process_block (buffer, len & ~127, ctx);	  buffer = (const char *) buffer + (len & ~127);	  len &= 127;	}    }  /* Move remaining bytes into internal buffer.  */  if (len > 0)    {      size_t left_over = ctx->buflen;      memcpy (&ctx->buffer[left_over], buffer, len);      left_over += len;      if (left_over >= 128)	{	  sha512_process_block (ctx->buffer, 128, ctx);	  left_over -= 128;	  memcpy (ctx->buffer, &ctx->buffer[128], left_over);	}      ctx->buflen = left_over;    }}
 |