1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- /* w_jnl.c -- long double version of w_jn.c.
- * Conversion to long double by Ulrich Drepper,
- * Cygnus Support, drepper@cygnus.com.
- */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- #if defined(LIBM_SCCS) && !defined(lint)
- static char rcsid[] = "$NetBSD: $";
- #endif
- /*
- * wrapper jn(int n, double x), yn(int n, double x)
- * floating point Bessel's function of the 1st and 2nd kind
- * of order n
- *
- * Special cases:
- * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
- * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
- * Note 2. About jn(n,x), yn(n,x)
- * For n=0, j0(x) is called,
- * for n=1, j1(x) is called,
- * for n<x, forward recursion us used starting
- * from values of j0(x) and j1(x).
- * for n>x, a continued fraction approximation to
- * j(n,x)/j(n-1,x) is evaluated and then backward
- * recursion is used starting from a supposed value
- * for j(n,x). The resulting value of j(0,x) is
- * compared with the actual value to correct the
- * supposed value of j(n,x).
- *
- * yn(n,x) is similar in all respects, except
- * that forward recursion is used for all
- * values of n>1.
- *
- */
- #include <math.h>
- #include "math_private.h"
- #if !defined __NO_LONG_DOUBLE_MATH
- # ifndef __DO_XSI_MATH__
- long double
- jnl(int n, long double x) /* wrapper jnl */
- {
- # if defined(__UCLIBC_HAS_FENV__)
- long double z;
- z = (long double) __ieee754_jn(n, (double) x);
- if (_LIB_VERSION == _IEEE_
- || _LIB_VERSION == _POSIX_
- || isnan(x))
- return z;
- if(fabsl(x)>X_TLOSS) {
- return __kernel_standard_l((double)n,x,238); /* jn(|x|>X_TLOSS,n) */
- } else
- return z;
- # else
- return (long double) __ieee754_jn(n, (double) x);
- # endif /* __UCLIBC_HAS_FENV__ */
- }
- long double
- ynl(int n, long double x) /* wrapper ynl */
- {
- # if defined(__UCLIBC_HAS_FENV__)
- long double z;
- z = (long double) __ieee754_yn(n,(double) x);
- if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
- if(x <= 0.0){
- if(x==0.0)
- /* d= -one/(x-x); */
- return __kernel_standard_l((double)n,x,212);
- else
- /* d = zero/(x-x); */
- return __kernel_standard_l((double)n,x,213);
- }
- if(x>X_TLOSS && _LIB_VERSION != _POSIX_) {
- return __kernel_standard_l((double)n,x,239); /* yn(x>X_TLOSS,n) */
- } else
- return z;
- # else
- return (long double) __ieee754_yn(n,(double) x);
- # endif /* __UCLIBC_HAS_FENV__ */
- }
- # endif /* __DO_XSI_MATH__ */
- #endif /* __NO_LONG_DOUBLE_MATH */
|