123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- /* ellpe.c
- *
- * Complete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * double m1, y, ellpe();
- *
- * y = ellpe( m1 );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * pi/2
- * -
- * | | 2
- * E(m) = | sqrt( 1 - m sin t ) dt
- * | |
- * -
- * 0
- *
- * Where m = 1 - m1, using the approximation
- *
- * P(x) - x log x Q(x).
- *
- * Though there are no singularities, the argument m1 is used
- * rather than m for compatibility with ellpk().
- *
- * E(1) = 1; E(0) = pi/2.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0, 1 13000 3.1e-17 9.4e-18
- * IEEE 0, 1 10000 2.1e-16 7.3e-17
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ellpe domain x<0, x>1 0.0
- *
- */
- /* ellpe.c */
- /* Elliptic integral of second kind */
- /*
- Cephes Math Library, Release 2.8: June, 2000
- Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef UNK
- static double P[] = {
- 1.53552577301013293365E-4,
- 2.50888492163602060990E-3,
- 8.68786816565889628429E-3,
- 1.07350949056076193403E-2,
- 7.77395492516787092951E-3,
- 7.58395289413514708519E-3,
- 1.15688436810574127319E-2,
- 2.18317996015557253103E-2,
- 5.68051945617860553470E-2,
- 4.43147180560990850618E-1,
- 1.00000000000000000299E0
- };
- static double Q[] = {
- 3.27954898576485872656E-5,
- 1.00962792679356715133E-3,
- 6.50609489976927491433E-3,
- 1.68862163993311317300E-2,
- 2.61769742454493659583E-2,
- 3.34833904888224918614E-2,
- 4.27180926518931511717E-2,
- 5.85936634471101055642E-2,
- 9.37499997197644278445E-2,
- 2.49999999999888314361E-1
- };
- #endif
- #ifdef DEC
- static unsigned short P[] = {
- 0035041,0001364,0141572,0117555,
- 0036044,0066032,0130027,0033404,
- 0036416,0053617,0064456,0102632,
- 0036457,0161100,0061177,0122612,
- 0036376,0136251,0012403,0124162,
- 0036370,0101316,0151715,0131613,
- 0036475,0105477,0050317,0133272,
- 0036662,0154232,0024645,0171552,
- 0037150,0126220,0047054,0030064,
- 0037742,0162057,0167645,0165612,
- 0040200,0000000,0000000,0000000
- };
- static unsigned short Q[] = {
- 0034411,0106743,0115771,0055462,
- 0035604,0052575,0155171,0045540,
- 0036325,0030424,0064332,0167756,
- 0036612,0052366,0063006,0115175,
- 0036726,0070430,0004533,0124654,
- 0037011,0022741,0030675,0030711,
- 0037056,0174452,0127062,0132122,
- 0037157,0177750,0142041,0072523,
- 0037277,0177777,0173137,0002627,
- 0037577,0177777,0177777,0101101
- };
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {
- 0x53ee,0x986f,0x205e,0x3f24,
- 0xe6e0,0x5602,0x8d83,0x3f64,
- 0xd0b3,0xed25,0xcaf1,0x3f81,
- 0xf4b1,0x0c4f,0xfc48,0x3f85,
- 0x750e,0x22a0,0xd795,0x3f7f,
- 0xb671,0xda79,0x1059,0x3f7f,
- 0xf6d7,0xea19,0xb167,0x3f87,
- 0xbe6d,0x4534,0x5b13,0x3f96,
- 0x8607,0x09c5,0x1592,0x3fad,
- 0xbd71,0xfdf4,0x5c85,0x3fdc,
- 0x0000,0x0000,0x0000,0x3ff0
- };
- static unsigned short Q[] = {
- 0x2b66,0x737f,0x31bc,0x3f01,
- 0x296c,0xbb4f,0x8aaf,0x3f50,
- 0x5dfe,0x8d1b,0xa622,0x3f7a,
- 0xd350,0xccc0,0x4a9e,0x3f91,
- 0x7535,0x012b,0xce23,0x3f9a,
- 0xa639,0x2637,0x24bc,0x3fa1,
- 0x568a,0x55c6,0xdf25,0x3fa5,
- 0x2eaa,0x1884,0xfffd,0x3fad,
- 0xe0b3,0xfecb,0xffff,0x3fb7,
- 0xf048,0xffff,0xffff,0x3fcf
- };
- #endif
- #ifdef MIEEE
- static unsigned short P[] = {
- 0x3f24,0x205e,0x986f,0x53ee,
- 0x3f64,0x8d83,0x5602,0xe6e0,
- 0x3f81,0xcaf1,0xed25,0xd0b3,
- 0x3f85,0xfc48,0x0c4f,0xf4b1,
- 0x3f7f,0xd795,0x22a0,0x750e,
- 0x3f7f,0x1059,0xda79,0xb671,
- 0x3f87,0xb167,0xea19,0xf6d7,
- 0x3f96,0x5b13,0x4534,0xbe6d,
- 0x3fad,0x1592,0x09c5,0x8607,
- 0x3fdc,0x5c85,0xfdf4,0xbd71,
- 0x3ff0,0x0000,0x0000,0x0000
- };
- static unsigned short Q[] = {
- 0x3f01,0x31bc,0x737f,0x2b66,
- 0x3f50,0x8aaf,0xbb4f,0x296c,
- 0x3f7a,0xa622,0x8d1b,0x5dfe,
- 0x3f91,0x4a9e,0xccc0,0xd350,
- 0x3f9a,0xce23,0x012b,0x7535,
- 0x3fa1,0x24bc,0x2637,0xa639,
- 0x3fa5,0xdf25,0x55c6,0x568a,
- 0x3fad,0xfffd,0x1884,0x2eaa,
- 0x3fb7,0xffff,0xfecb,0xe0b3,
- 0x3fcf,0xffff,0xffff,0xf048
- };
- #endif
- #ifdef ANSIPROT
- extern double polevl ( double, void *, int );
- extern double log ( double );
- #else
- double polevl(), log();
- #endif
- double ellpe(x)
- double x;
- {
- if( (x <= 0.0) || (x > 1.0) )
- {
- if( x == 0.0 )
- return( 1.0 );
- mtherr( "ellpe", DOMAIN );
- return( 0.0 );
- }
- return( polevl(x,P,10) - log(x) * (x * polevl(x,Q,9)) );
- }
|