123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- /* exp.c
- *
- * Exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, exp();
- *
- * y = exp( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * A Pade' form 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- * of degree 2/3 is used to approximate exp(f) in the basic
- * interval [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC +- 88 50000 2.8e-17 7.0e-18
- * IEEE +- 708 40000 2.0e-16 5.6e-17
- *
- *
- * Error amplification in the exponential function can be
- * a serious matter. The error propagation involves
- * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
- * which shows that a 1 lsb error in representing X produces
- * a relative error of X times 1 lsb in the function.
- * While the routine gives an accurate result for arguments
- * that are exactly represented by a double precision
- * computer number, the result contains amplified roundoff
- * error for large arguments not exactly represented.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp underflow x < MINLOG 0.0
- * exp overflow x > MAXLOG INFINITY
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1995, 2000 by Stephen L. Moshier
- */
- /* Exponential function */
- #include <math.h>
- #ifdef UNK
- static double P[] = {
- 1.26177193074810590878E-4,
- 3.02994407707441961300E-2,
- 9.99999999999999999910E-1,
- };
- static double Q[] = {
- 3.00198505138664455042E-6,
- 2.52448340349684104192E-3,
- 2.27265548208155028766E-1,
- 2.00000000000000000009E0,
- };
- static double C1 = 6.93145751953125E-1;
- static double C2 = 1.42860682030941723212E-6;
- #endif
- #ifdef DEC
- static unsigned short P[] = {
- 0035004,0047156,0127442,0057502,
- 0036770,0033210,0063121,0061764,
- 0040200,0000000,0000000,0000000,
- };
- static unsigned short Q[] = {
- 0033511,0072665,0160662,0176377,
- 0036045,0070715,0124105,0132777,
- 0037550,0134114,0142077,0001637,
- 0040400,0000000,0000000,0000000,
- };
- static unsigned short sc1[] = {0040061,0071000,0000000,0000000};
- #define C1 (*(double *)sc1)
- static unsigned short sc2[] = {0033277,0137216,0075715,0057117};
- #define C2 (*(double *)sc2)
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {
- 0x4be8,0xd5e4,0x89cd,0x3f20,
- 0x2c7e,0x0cca,0x06d1,0x3f9f,
- 0x0000,0x0000,0x0000,0x3ff0,
- };
- static unsigned short Q[] = {
- 0x5fa0,0xbc36,0x2eb6,0x3ec9,
- 0xb6c0,0xb508,0xae39,0x3f64,
- 0xe074,0x9887,0x1709,0x3fcd,
- 0x0000,0x0000,0x0000,0x4000,
- };
- static unsigned short sc1[] = {0x0000,0x0000,0x2e40,0x3fe6};
- #define C1 (*(double *)sc1)
- static unsigned short sc2[] = {0xabca,0xcf79,0xf7d1,0x3eb7};
- #define C2 (*(double *)sc2)
- #endif
- #ifdef MIEEE
- static unsigned short P[] = {
- 0x3f20,0x89cd,0xd5e4,0x4be8,
- 0x3f9f,0x06d1,0x0cca,0x2c7e,
- 0x3ff0,0x0000,0x0000,0x0000,
- };
- static unsigned short Q[] = {
- 0x3ec9,0x2eb6,0xbc36,0x5fa0,
- 0x3f64,0xae39,0xb508,0xb6c0,
- 0x3fcd,0x1709,0x9887,0xe074,
- 0x4000,0x0000,0x0000,0x0000,
- };
- static unsigned short sc1[] = {0x3fe6,0x2e40,0x0000,0x0000};
- #define C1 (*(double *)sc1)
- static unsigned short sc2[] = {0x3eb7,0xf7d1,0xcf79,0xabca};
- #define C2 (*(double *)sc2)
- #endif
- #ifdef ANSIPROT
- extern double polevl ( double, void *, int );
- extern double p1evl ( double, void *, int );
- extern double floor ( double );
- extern double ldexp ( double, int );
- extern int isnan ( double );
- extern int isfinite ( double );
- #else
- double polevl(), p1evl(), floor(), ldexp();
- int isnan(), isfinite();
- #endif
- extern double LOGE2, LOG2E, MAXLOG, MINLOG, MAXNUM;
- #ifdef INFINITIES
- extern double INFINITY;
- #endif
- double exp(x)
- double x;
- {
- double px, xx;
- int n;
- #ifdef NANS
- if( isnan(x) )
- return(x);
- #endif
- if( x > MAXLOG)
- {
- #ifdef INFINITIES
- return( INFINITY );
- #else
- mtherr( "exp", OVERFLOW );
- return( MAXNUM );
- #endif
- }
- if( x < MINLOG )
- {
- #ifndef INFINITIES
- mtherr( "exp", UNDERFLOW );
- #endif
- return(0.0);
- }
- /* Express e**x = e**g 2**n
- * = e**g e**( n loge(2) )
- * = e**( g + n loge(2) )
- */
- px = floor( LOG2E * x + 0.5 ); /* floor() truncates toward -infinity. */
- n = px;
- x -= px * C1;
- x -= px * C2;
- /* rational approximation for exponential
- * of the fractional part:
- * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- */
- xx = x * x;
- px = x * polevl( xx, P, 2 );
- x = px/( polevl( xx, Q, 3 ) - px );
- x = 1.0 + 2.0 * x;
- /* multiply by power of 2 */
- x = ldexp( x, n );
- return(x);
- }
|