123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- /* i1.c
- *
- * Modified Bessel function of order one
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, i1();
- *
- * y = i1( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order one of the
- * argument.
- *
- * The function is defined as i1(x) = -i j1( ix ).
- *
- * The range is partitioned into the two intervals [0,8] and
- * (8, infinity). Chebyshev polynomial expansions are employed
- * in each interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0, 30 3400 1.2e-16 2.3e-17
- * IEEE 0, 30 30000 1.9e-15 2.1e-16
- *
- *
- */
- /* i1e.c
- *
- * Modified Bessel function of order one,
- * exponentially scaled
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, i1e();
- *
- * y = i1e( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns exponentially scaled modified Bessel function
- * of order one of the argument.
- *
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 30 30000 2.0e-15 2.0e-16
- * See i1().
- *
- */
- /* i1.c 2 */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1985, 1987, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- /* Chebyshev coefficients for exp(-x) I1(x) / x
- * in the interval [0,8].
- *
- * lim(x->0){ exp(-x) I1(x) / x } = 1/2.
- */
- #ifdef UNK
- static double A[] =
- {
- 2.77791411276104639959E-18,
- -2.11142121435816608115E-17,
- 1.55363195773620046921E-16,
- -1.10559694773538630805E-15,
- 7.60068429473540693410E-15,
- -5.04218550472791168711E-14,
- 3.22379336594557470981E-13,
- -1.98397439776494371520E-12,
- 1.17361862988909016308E-11,
- -6.66348972350202774223E-11,
- 3.62559028155211703701E-10,
- -1.88724975172282928790E-9,
- 9.38153738649577178388E-9,
- -4.44505912879632808065E-8,
- 2.00329475355213526229E-7,
- -8.56872026469545474066E-7,
- 3.47025130813767847674E-6,
- -1.32731636560394358279E-5,
- 4.78156510755005422638E-5,
- -1.61760815825896745588E-4,
- 5.12285956168575772895E-4,
- -1.51357245063125314899E-3,
- 4.15642294431288815669E-3,
- -1.05640848946261981558E-2,
- 2.47264490306265168283E-2,
- -5.29459812080949914269E-2,
- 1.02643658689847095384E-1,
- -1.76416518357834055153E-1,
- 2.52587186443633654823E-1
- };
- #endif
- #ifdef DEC
- static unsigned short A[] = {
- 0021514,0174520,0060742,0000241,
- 0122302,0137206,0016120,0025663,
- 0023063,0017437,0026235,0176536,
- 0123637,0052523,0170150,0125632,
- 0024410,0165770,0030251,0044134,
- 0125143,0012160,0162170,0054727,
- 0025665,0075702,0035716,0145247,
- 0126413,0116032,0176670,0015462,
- 0027116,0073425,0110351,0105242,
- 0127622,0104034,0137530,0037364,
- 0030307,0050645,0120776,0175535,
- 0131001,0130331,0043523,0037455,
- 0031441,0026160,0010712,0100174,
- 0132076,0164761,0022706,0017500,
- 0032527,0015045,0115076,0104076,
- 0133146,0001714,0015434,0144520,
- 0033550,0161166,0124215,0077050,
- 0134136,0127715,0143365,0157170,
- 0034510,0106652,0013070,0064130,
- 0135051,0117126,0117264,0123761,
- 0035406,0045355,0133066,0175751,
- 0135706,0061420,0054746,0122440,
- 0036210,0031232,0047235,0006640,
- 0136455,0012373,0144235,0011523,
- 0036712,0107437,0036731,0015111,
- 0137130,0156742,0115744,0172743,
- 0037322,0033326,0124667,0124740,
- 0137464,0123210,0021510,0144556,
- 0037601,0051433,0111123,0177721
- };
- #endif
- #ifdef IBMPC
- static unsigned short A[] = {
- 0x4014,0x0c3c,0x9f2a,0x3c49,
- 0x0576,0xc38a,0x57d0,0xbc78,
- 0xbfac,0xe593,0x63e3,0x3ca6,
- 0x1573,0x7e0d,0xeaaa,0xbcd3,
- 0x290c,0x0615,0x1d7f,0x3d01,
- 0x0b3b,0x1c8f,0x628e,0xbd2c,
- 0xd955,0x4779,0xaf78,0x3d56,
- 0x0366,0x5fb7,0x7383,0xbd81,
- 0x3154,0xb21d,0xcee2,0x3da9,
- 0x07de,0x97eb,0x5103,0xbdd2,
- 0xdf6c,0xb43f,0xea34,0x3df8,
- 0x67e6,0x28ea,0x361b,0xbe20,
- 0x5010,0x0239,0x258e,0x3e44,
- 0xc3e8,0x24b8,0xdd3e,0xbe67,
- 0xd108,0xb347,0xe344,0x3e8a,
- 0x992a,0x8363,0xc079,0xbeac,
- 0xafc5,0xd511,0x1c4e,0x3ecd,
- 0xbbcf,0xb8de,0xd5f9,0xbeeb,
- 0x0d0b,0x42c7,0x11b5,0x3f09,
- 0x94fe,0xd3d6,0x33ca,0xbf25,
- 0xdf7d,0xb6c6,0xc95d,0x3f40,
- 0xd4a4,0x0b3c,0xcc62,0xbf58,
- 0xa1b4,0x49d3,0x0653,0x3f71,
- 0xa26a,0x7913,0xa29f,0xbf85,
- 0x2349,0xe7bb,0x51e3,0x3f99,
- 0x9ebc,0x537c,0x1bbc,0xbfab,
- 0xf53c,0xd536,0x46da,0x3fba,
- 0x192e,0x0469,0x94d1,0xbfc6,
- 0x7ffa,0x724a,0x2a63,0x3fd0
- };
- #endif
- #ifdef MIEEE
- static unsigned short A[] = {
- 0x3c49,0x9f2a,0x0c3c,0x4014,
- 0xbc78,0x57d0,0xc38a,0x0576,
- 0x3ca6,0x63e3,0xe593,0xbfac,
- 0xbcd3,0xeaaa,0x7e0d,0x1573,
- 0x3d01,0x1d7f,0x0615,0x290c,
- 0xbd2c,0x628e,0x1c8f,0x0b3b,
- 0x3d56,0xaf78,0x4779,0xd955,
- 0xbd81,0x7383,0x5fb7,0x0366,
- 0x3da9,0xcee2,0xb21d,0x3154,
- 0xbdd2,0x5103,0x97eb,0x07de,
- 0x3df8,0xea34,0xb43f,0xdf6c,
- 0xbe20,0x361b,0x28ea,0x67e6,
- 0x3e44,0x258e,0x0239,0x5010,
- 0xbe67,0xdd3e,0x24b8,0xc3e8,
- 0x3e8a,0xe344,0xb347,0xd108,
- 0xbeac,0xc079,0x8363,0x992a,
- 0x3ecd,0x1c4e,0xd511,0xafc5,
- 0xbeeb,0xd5f9,0xb8de,0xbbcf,
- 0x3f09,0x11b5,0x42c7,0x0d0b,
- 0xbf25,0x33ca,0xd3d6,0x94fe,
- 0x3f40,0xc95d,0xb6c6,0xdf7d,
- 0xbf58,0xcc62,0x0b3c,0xd4a4,
- 0x3f71,0x0653,0x49d3,0xa1b4,
- 0xbf85,0xa29f,0x7913,0xa26a,
- 0x3f99,0x51e3,0xe7bb,0x2349,
- 0xbfab,0x1bbc,0x537c,0x9ebc,
- 0x3fba,0x46da,0xd536,0xf53c,
- 0xbfc6,0x94d1,0x0469,0x192e,
- 0x3fd0,0x2a63,0x724a,0x7ffa
- };
- #endif
- /* i1.c */
- /* Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
- * in the inverted interval [8,infinity].
- *
- * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
- */
- #ifdef UNK
- static double B[] =
- {
- 7.51729631084210481353E-18,
- 4.41434832307170791151E-18,
- -4.65030536848935832153E-17,
- -3.20952592199342395980E-17,
- 2.96262899764595013876E-16,
- 3.30820231092092828324E-16,
- -1.88035477551078244854E-15,
- -3.81440307243700780478E-15,
- 1.04202769841288027642E-14,
- 4.27244001671195135429E-14,
- -2.10154184277266431302E-14,
- -4.08355111109219731823E-13,
- -7.19855177624590851209E-13,
- 2.03562854414708950722E-12,
- 1.41258074366137813316E-11,
- 3.25260358301548823856E-11,
- -1.89749581235054123450E-11,
- -5.58974346219658380687E-10,
- -3.83538038596423702205E-9,
- -2.63146884688951950684E-8,
- -2.51223623787020892529E-7,
- -3.88256480887769039346E-6,
- -1.10588938762623716291E-4,
- -9.76109749136146840777E-3,
- 7.78576235018280120474E-1
- };
- #endif
- #ifdef DEC
- static unsigned short B[] = {
- 0022012,0125555,0115227,0043456,
- 0021642,0156127,0052075,0145203,
- 0122526,0072435,0111231,0011664,
- 0122424,0001544,0161671,0114403,
- 0023252,0144257,0163532,0142121,
- 0023276,0132162,0174045,0013204,
- 0124007,0077154,0057046,0110517,
- 0124211,0066650,0116127,0157073,
- 0024473,0133413,0130551,0107504,
- 0025100,0064741,0032631,0040364,
- 0124675,0045101,0071551,0012400,
- 0125745,0161054,0071637,0011247,
- 0126112,0117410,0035525,0122231,
- 0026417,0037237,0131034,0176427,
- 0027170,0100373,0024742,0025725,
- 0027417,0006417,0105303,0141446,
- 0127246,0163716,0121202,0060137,
- 0130431,0123122,0120436,0166000,
- 0131203,0144134,0153251,0124500,
- 0131742,0005234,0122732,0033006,
- 0132606,0157751,0072362,0121031,
- 0133602,0043372,0047120,0015626,
- 0134747,0165774,0001125,0046462,
- 0136437,0166402,0117746,0155137,
- 0040107,0050305,0125330,0124241
- };
- #endif
- #ifdef IBMPC
- static unsigned short B[] = {
- 0xe8e6,0xb352,0x556d,0x3c61,
- 0xb950,0xea87,0x5b8a,0x3c54,
- 0x2277,0xb253,0xcea3,0xbc8a,
- 0x3320,0x9c77,0x806c,0xbc82,
- 0x588a,0xfceb,0x5915,0x3cb5,
- 0xa2d1,0x5f04,0xd68e,0x3cb7,
- 0xd22a,0x8bc4,0xefcd,0xbce0,
- 0xfbc7,0x138a,0x2db5,0xbcf1,
- 0x31e8,0x762d,0x76e1,0x3d07,
- 0x281e,0x26b3,0x0d3c,0x3d28,
- 0x22a0,0x2e6d,0xa948,0xbd17,
- 0xe255,0x8e73,0xbc45,0xbd5c,
- 0xb493,0x076a,0x53e1,0xbd69,
- 0x9fa3,0xf643,0xe7d3,0x3d81,
- 0x457b,0x653c,0x101f,0x3daf,
- 0x7865,0xf158,0xe1a1,0x3dc1,
- 0x4c0c,0xd450,0xdcf9,0xbdb4,
- 0xdd80,0x5423,0x34ca,0xbe03,
- 0x3528,0x9ad5,0x790b,0xbe30,
- 0x46c1,0x94bb,0x4153,0xbe5c,
- 0x5443,0x2e9e,0xdbfd,0xbe90,
- 0x0373,0x49ca,0x48df,0xbed0,
- 0xa9a6,0x804a,0xfd7f,0xbf1c,
- 0xdb4c,0x53fc,0xfda0,0xbf83,
- 0x1514,0xb55b,0xea18,0x3fe8
- };
- #endif
- #ifdef MIEEE
- static unsigned short B[] = {
- 0x3c61,0x556d,0xb352,0xe8e6,
- 0x3c54,0x5b8a,0xea87,0xb950,
- 0xbc8a,0xcea3,0xb253,0x2277,
- 0xbc82,0x806c,0x9c77,0x3320,
- 0x3cb5,0x5915,0xfceb,0x588a,
- 0x3cb7,0xd68e,0x5f04,0xa2d1,
- 0xbce0,0xefcd,0x8bc4,0xd22a,
- 0xbcf1,0x2db5,0x138a,0xfbc7,
- 0x3d07,0x76e1,0x762d,0x31e8,
- 0x3d28,0x0d3c,0x26b3,0x281e,
- 0xbd17,0xa948,0x2e6d,0x22a0,
- 0xbd5c,0xbc45,0x8e73,0xe255,
- 0xbd69,0x53e1,0x076a,0xb493,
- 0x3d81,0xe7d3,0xf643,0x9fa3,
- 0x3daf,0x101f,0x653c,0x457b,
- 0x3dc1,0xe1a1,0xf158,0x7865,
- 0xbdb4,0xdcf9,0xd450,0x4c0c,
- 0xbe03,0x34ca,0x5423,0xdd80,
- 0xbe30,0x790b,0x9ad5,0x3528,
- 0xbe5c,0x4153,0x94bb,0x46c1,
- 0xbe90,0xdbfd,0x2e9e,0x5443,
- 0xbed0,0x48df,0x49ca,0x0373,
- 0xbf1c,0xfd7f,0x804a,0xa9a6,
- 0xbf83,0xfda0,0x53fc,0xdb4c,
- 0x3fe8,0xea18,0xb55b,0x1514
- };
- #endif
- /* i1.c */
- #ifdef ANSIPROT
- extern double chbevl ( double, void *, int );
- extern double exp ( double );
- extern double sqrt ( double );
- extern double fabs ( double );
- #else
- double chbevl(), exp(), sqrt(), fabs();
- #endif
- double i1(x)
- double x;
- {
- double y, z;
- z = fabs(x);
- if( z <= 8.0 )
- {
- y = (z/2.0) - 2.0;
- z = chbevl( y, A, 29 ) * z * exp(z);
- }
- else
- {
- z = exp(z) * chbevl( 32.0/z - 2.0, B, 25 ) / sqrt(z);
- }
- if( x < 0.0 )
- z = -z;
- return( z );
- }
- /* i1e() */
- double i1e( x )
- double x;
- {
- double y, z;
- z = fabs(x);
- if( z <= 8.0 )
- {
- y = (z/2.0) - 2.0;
- z = chbevl( y, A, 29 ) * z;
- }
- else
- {
- z = chbevl( 32.0/z - 2.0, B, 25 ) / sqrt(z);
- }
- if( x < 0.0 )
- z = -z;
- return( z );
- }
|