123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- /* igam.c
- *
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igam();
- *
- * y = igam( a, x );
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 200000 3.6e-14 2.9e-15
- * IEEE 0,100 300000 9.9e-14 1.5e-14
- */
- /* igamc()
- *
- * Complemented incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igamc();
- *
- * y = igamc( a, x );
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- *
- * igamc(a,x) = 1 - igam(a,x)
- *
- * inf.
- * -
- * 1 | | -t a-1
- * = ----- | e t dt.
- * - | |
- * | (a) -
- * x
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- * ACCURACY:
- *
- * Tested at random a, x.
- * a x Relative error:
- * arithmetic domain domain # trials peak rms
- * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
- * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1985, 1987, 2000 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef ANSIPROT
- extern double lgam ( double );
- extern double exp ( double );
- extern double log ( double );
- extern double fabs ( double );
- extern double igam ( double, double );
- extern double igamc ( double, double );
- #else
- double lgam(), exp(), log(), fabs(), igam(), igamc();
- #endif
- extern double MACHEP, MAXLOG;
- static double big = 4.503599627370496e15;
- static double biginv = 2.22044604925031308085e-16;
- double igamc( a, x )
- double a, x;
- {
- double ans, ax, c, yc, r, t, y, z;
- double pk, pkm1, pkm2, qk, qkm1, qkm2;
- if( (x <= 0) || ( a <= 0) )
- return( 1.0 );
- if( (x < 1.0) || (x < a) )
- return( 1.0 - igam(a,x) );
- ax = a * log(x) - x - lgam(a);
- if( ax < -MAXLOG )
- {
- mtherr( "igamc", UNDERFLOW );
- return( 0.0 );
- }
- ax = exp(ax);
- /* continued fraction */
- y = 1.0 - a;
- z = x + y + 1.0;
- c = 0.0;
- pkm2 = 1.0;
- qkm2 = x;
- pkm1 = x + 1.0;
- qkm1 = z * x;
- ans = pkm1/qkm1;
- do
- {
- c += 1.0;
- y += 1.0;
- z += 2.0;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if( qk != 0 )
- {
- r = pk/qk;
- t = fabs( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if( fabs(pk) > big )
- {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- }
- while( t > MACHEP );
- return( ans * ax );
- }
- /* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
- *
- */
- double igam( a, x )
- double a, x;
- {
- double ans, ax, c, r;
- if( (x <= 0) || ( a <= 0) )
- return( 0.0 );
- if( (x > 1.0) && (x > a ) )
- return( 1.0 - igamc(a,x) );
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * log(x) - x - lgam(a);
- if( ax < -MAXLOG )
- {
- mtherr( "igam", UNDERFLOW );
- return( 0.0 );
- }
- ax = exp(ax);
- /* power series */
- r = a;
- c = 1.0;
- ans = 1.0;
- do
- {
- r += 1.0;
- c *= x/r;
- ans += c;
- }
- while( c/ans > MACHEP );
- return( ans * ax/a );
- }
|