12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- /* Levnsn.c */
- /* Levinson-Durbin LPC
- *
- * | R0 R1 R2 ... RN-1 | | A1 | | -R1 |
- * | R1 R0 R1 ... RN-2 | | A2 | | -R2 |
- * | R2 R1 R0 ... RN-3 | | A3 | = | -R3 |
- * | ... | | ...| | ... |
- * | RN-1 RN-2... R0 | | AN | | -RN |
- *
- * Ref: John Makhoul, "Linear Prediction, A Tutorial Review"
- * Proc. IEEE Vol. 63, PP 561-580 April, 1975.
- *
- * R is the input autocorrelation function. R0 is the zero lag
- * term. A is the output array of predictor coefficients. Note
- * that a filter impulse response has a coefficient of 1.0 preceding
- * A1. E is an array of mean square error for each prediction order
- * 1 to N. REFL is an output array of the reflection coefficients.
- */
- #define abs(x) ( (x) < 0 ? -(x) : (x) )
- int levnsn( n, r, a, e, refl )
- int n;
- double r[], a[], e[], refl[];
- {
- int k, km1, i, kmi, j;
- double ai, akk, err, err1, r0, t, akmi;
- double *pa, *pr;
- for( i=0; i<n; i++ )
- {
- a[i] = 0.0;
- e[i] = 0.0;
- refl[i] = 0.0;
- }
- r0 = r[0];
- e[0] = r0;
- err = r0;
- akk = -r[1]/err;
- err = (1.0 - akk*akk) * err;
- e[1] = err;
- a[1] = akk;
- refl[1] = akk;
- if( err < 1.0e-2 )
- return 0;
- for( k=2; k<n; k++ )
- {
- t = 0.0;
- pa = &a[1];
- pr = &r[k-1];
- for( j=1; j<k; j++ )
- t += *pa++ * *pr--;
- akk = -( r[k] + t )/err;
- refl[k] = akk;
- km1 = k/2;
- for( j=1; j<=km1; j++ )
- {
- kmi = k-j;
- ai = a[j];
- akmi = a[kmi];
- a[j] = ai + akk*akmi;
- if( i == kmi )
- goto nxtk;
- a[kmi] = akmi + akk*ai;
- }
- nxtk:
- a[k] = akk;
- err1 = (1.0 - akk*akk)*err;
- e[k] = err1;
- if( err1 < 0 )
- err1 = -err1;
- /* err1 = abs(err1);*/
- /* if( (err1 < 1.0e-2) || (err1 >= err) )*/
- if( err1 < 1.0e-2 )
- return 0;
- err = err1;
- }
- return 0;
- }
|