123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- /* powil.c
- *
- * Real raised to integer power, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, powil();
- * int n;
- *
- * y = powil( x, n );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns argument x raised to the nth power.
- * The routine efficiently decomposes n as a sum of powers of
- * two. The desired power is a product of two-to-the-kth
- * powers of x. Thus to compute the 32767 power of x requires
- * 28 multiplications instead of 32767 multiplications.
- *
- *
- *
- * ACCURACY:
- *
- *
- * Relative error:
- * arithmetic x domain n domain # trials peak rms
- * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
- * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
- * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
- *
- * Returns MAXNUM on overflow, zero on underflow.
- *
- */
- /* powil.c */
- /*
- Cephes Math Library Release 2.2: December, 1990
- Copyright 1984, 1990 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
- #include <math.h>
- extern long double MAXNUML, MAXLOGL, MINLOGL;
- extern long double LOGE2L;
- #ifdef ANSIPROT
- extern long double frexpl ( long double, int * );
- #else
- long double frexpl();
- #endif
- long double powil( x, nn )
- long double x;
- int nn;
- {
- long double w, y;
- long double s;
- int n, e, sign, asign, lx;
- if( x == 0.0L )
- {
- if( nn == 0 )
- return( 1.0L );
- else if( nn < 0 )
- return( MAXNUML );
- else
- return( 0.0L );
- }
- if( nn == 0 )
- return( 1.0L );
- if( x < 0.0L )
- {
- asign = -1;
- x = -x;
- }
- else
- asign = 0;
- if( nn < 0 )
- {
- sign = -1;
- n = -nn;
- }
- else
- {
- sign = 1;
- n = nn;
- }
- /* Overflow detection */
- /* Calculate approximate logarithm of answer */
- s = x;
- s = frexpl( s, &lx );
- e = (lx - 1)*n;
- if( (e == 0) || (e > 64) || (e < -64) )
- {
- s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
- s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
- }
- else
- {
- s = LOGE2L * e;
- }
- if( s > MAXLOGL )
- {
- mtherr( "powil", OVERFLOW );
- y = MAXNUML;
- goto done;
- }
- if( s < MINLOGL )
- {
- mtherr( "powil", UNDERFLOW );
- return(0.0L);
- }
- /* Handle tiny denormal answer, but with less accuracy
- * since roundoff error in 1.0/x will be amplified.
- * The precise demarcation should be the gradual underflow threshold.
- */
- if( s < (-MAXLOGL+2.0L) )
- {
- x = 1.0L/x;
- sign = -sign;
- }
- /* First bit of the power */
- if( n & 1 )
- y = x;
-
- else
- {
- y = 1.0L;
- asign = 0;
- }
- w = x;
- n >>= 1;
- while( n )
- {
- w = w * w; /* arg to the 2-to-the-kth power */
- if( n & 1 ) /* if that bit is set, then include in product */
- y *= w;
- n >>= 1;
- }
- done:
- if( asign )
- y = -y; /* odd power of negative number */
- if( sign < 0 )
- y = 1.0L/y;
- return(y);
- }
|