| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 | /* @(#)s_log1p.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";#endif/* double log1p(double x) * * Method :                   *   1. Argument Reduction: find k and f such that  *			1+x = 2^k * (1+f),  *	   where  sqrt(2)/2 < 1+f < sqrt(2) . * *      Note. If k=0, then f=x is exact. However, if k!=0, then f *	may not be representable exactly. In that case, a correction *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), *	and add back the correction term c/u. *	(Note: when x > 2**53, one can simply return log(x)) * *   2. Approximation of log1p(f). *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) *		 = 2s + 2/3 s**3 + 2/5 s**5 + ....., *	     	 = 2s + s*R *      We use a special Reme algorithm on [0,0.1716] to generate  * 	a polynomial of degree 14 to approximate R The maximum error  *	of this polynomial approximation is bounded by 2**-58.45. In *	other words, *		        2      4      6      8      10      12      14 *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s *  	(the values of Lp1 to Lp7 are listed in the program) *	and *	    |      2          14          |     -58.45 *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2  *	    |                             | *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. *	In order to guarantee error in log below 1ulp, we compute log *	by *		log1p(f) = f - (hfsq - s*(hfsq+R)). *	 *	3. Finally, log1p(x) = k*ln2 + log1p(f).   *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) *	   Here ln2 is split into two floating point number:  *			ln2_hi + ln2_lo, *	   where n*ln2_hi is always exact for |n| < 2000. * * Special cases: *	log1p(x) is NaN with signal if x < -1 (including -INF) ;  *	log1p(+INF) is +INF; log1p(-1) is -INF with signal; *	log1p(NaN) is that NaN with no signal. * * Accuracy: *	according to an error analysis, the error is always less than *	1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough  * to produce the hexadecimal values shown. * * Note: Assuming log() return accurate answer, the following * 	 algorithm can be used to compute log1p(x) to within a few ULP: *	 *		u = 1+x; *		if(u==1.0) return x ; else *			   return log(u)*(x/(u-1.0)); * *	 See HP-15C Advanced Functions Handbook, p.193. */#include "math.h"#include "math_private.h"#ifdef __STDC__static const double#elsestatic double#endifln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */#ifdef __STDC__static const double zero = 0.0;#elsestatic double zero = 0.0;#endif#ifdef __STDC__	double log1p(double x)#else	double log1p(x)	double x;#endif{	double hfsq,f=0,c=0,s,z,R,u;	int32_t k,hx,hu=0,ax;	GET_HIGH_WORD(hx,x);	ax = hx&0x7fffffff;	k = 1;	if (hx < 0x3FDA827A) {			/* x < 0.41422  */	    if(ax>=0x3ff00000) {		/* x <= -1.0 */		if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */	    }	    if(ax<0x3e200000) {			/* |x| < 2**-29 */		if(two54+x>zero			/* raise inexact */	            &&ax<0x3c900000) 		/* |x| < 2**-54 */		    return x;		else		    return x - x*x*0.5;	    }	    if(hx>0||hx<=((int32_t)0xbfd2bec3)) {		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */	} 	if (hx >= 0x7ff00000) return x+x;	if(k!=0) {	    if(hx<0x43400000) {		u  = 1.0+x; 		GET_HIGH_WORD(hu,u);	        k  = (hu>>20)-1023;	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */		c /= u;	    } else {		u  = x;		GET_HIGH_WORD(hu,u);	        k  = (hu>>20)-1023;		c  = 0;	    }	    hu &= 0x000fffff;	    if(hu<0x6a09e) {	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */	    } else {	        k += 1; 		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */	        hu = (0x00100000-hu)>>2;	    }	    f = u-1.0;	}	hfsq=0.5*f*f;	if(hu==0) {	/* |f| < 2**-20 */	    if(f==zero) {if(k==0) return zero;  			else {c += k*ln2_lo; return k*ln2_hi+c;}	    }	    R = hfsq*(1.0-0.66666666666666666*f);	    if(k==0) return f-R; else	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);	} 	s = f/(2.0+f); 	z = s*s;	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));	if(k==0) return f-(hfsq-s*(hfsq+R)); else		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);}
 |