| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 | /*							chdtr.c * *	Chi-square distribution * * * * SYNOPSIS: * * double df, x, y, chdtr(); * * y = chdtr( df, x ); * * * * DESCRIPTION: * * Returns the area under the left hand tail (from 0 to x) * of the Chi square probability density function with * v degrees of freedom. * * *                                  inf. *                                    - *                        1          | |  v/2-1  -t/2 *  P( x | v )   =   -----------     |   t      e     dt *                    v/2  -       | | *                   2    | (v/2)   - *                                   x * * where x is the Chi-square variable. * * The incomplete gamma integral is used, according to the * formula * *	y = chdtr( v, x ) = igam( v/2.0, x/2.0 ). * * * The arguments must both be positive. * * * * ACCURACY: * * See igam(). * * ERROR MESSAGES: * *   message         condition      value returned * chdtr domain   x < 0 or v < 1        0.0 *//*							chdtrc() * *	Complemented Chi-square distribution * * * * SYNOPSIS: * * double v, x, y, chdtrc(); * * y = chdtrc( v, x ); * * * * DESCRIPTION: * * Returns the area under the right hand tail (from x to * infinity) of the Chi square probability density function * with v degrees of freedom: * * *                                  inf. *                                    - *                        1          | |  v/2-1  -t/2 *  P( x | v )   =   -----------     |   t      e     dt *                    v/2  -       | | *                   2    | (v/2)   - *                                   x * * where x is the Chi-square variable. * * The incomplete gamma integral is used, according to the * formula * *	y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ). * * * The arguments must both be positive. * * * * ACCURACY: * * See igamc(). * * ERROR MESSAGES: * *   message         condition      value returned * chdtrc domain  x < 0 or v < 1        0.0 *//*							chdtri() * *	Inverse of complemented Chi-square distribution * * * * SYNOPSIS: * * double df, x, y, chdtri(); * * x = chdtri( df, y ); * * * * * DESCRIPTION: * * Finds the Chi-square argument x such that the integral * from x to infinity of the Chi-square density is equal * to the given cumulative probability y. * * This is accomplished using the inverse gamma integral * function and the relation * *    x/2 = igami( df/2, y ); * * * * * ACCURACY: * * See igami.c. * * ERROR MESSAGES: * *   message         condition      value returned * chdtri domain   y < 0 or y > 1        0.0 *                     v < 1 * *//*								chdtr() *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1987, 2000 by Stephen L. Moshier*/#include <math.h>#ifdef ANSIPROTextern double igamc ( double, double );extern double igam ( double, double );extern double igami ( double, double );#elsedouble igamc(), igam(), igami();#endifdouble chdtrc(df,x)double df, x;{if( (x < 0.0) || (df < 1.0) )	{	mtherr( "chdtrc", DOMAIN );	return(0.0);	}return( igamc( df/2.0, x/2.0 ) );}double chdtr(df,x)double df, x;{if( (x < 0.0) || (df < 1.0) )	{	mtherr( "chdtr", DOMAIN );	return(0.0);	}return( igam( df/2.0, x/2.0 ) );}double chdtri( df, y )double df, y;{double x;if( (y < 0.0) || (y > 1.0) || (df < 1.0) )	{	mtherr( "chdtri", DOMAIN );	return(0.0);	}x = igami( 0.5 * df, y );return( 2.0 * x );}
 |