| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 | /*							ivf.c * *	Modified Bessel function of noninteger order * * * * SYNOPSIS: * * float v, x, y, ivf(); * * y = ivf( v, x ); * * * * DESCRIPTION: * * Returns modified Bessel function of order v of the * argument.  If x is negative, v must be integer valued. * * The function is defined as Iv(x) = Jv( ix ).  It is * here computed in terms of the confluent hypergeometric * function, according to the formula * *              v  -x * Iv(x) = (x/2)  e   hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1) * * If v is a negative integer, then v is replaced by -v. * * * ACCURACY: * * Tested at random points (v, x), with v between 0 and * 30, x between 0 and 28. * arithmetic   domain     # trials      peak         rms *                      Relative error: *    IEEE      0,15          3000      4.7e-6      5.4e-7 *          Absolute error (relative when function > 1) *    IEEE      0,30          5000      8.5e-6      1.3e-6 * * Accuracy is diminished if v is near a negative integer. * The useful domain for relative error is limited by overflow * of the single precision exponential function. * * See also hyperg.c. * *//*							iv.c	*//*	Modified Bessel function of noninteger order		*//* If x < 0, then v must be an integer. *//*Cephes Math Library Release 2.2: June, 1992Copyright 1984, 1987, 1988, 1992 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include <math.h>extern float MAXNUMF;#define fabsf(x) ( (x) < 0 ? -(x) : (x) )float hypergf(float, float, float);float expf(float), gammaf(float), logf(float), floorf(float);float ivf( float v, float x ){int sign;float t, ax;/* If v is a negative integer, invoke symmetry */t = floorf(v);if( v < 0.0 )	{	if( t == v )		{		v = -v;	/* symmetry */		t = -t;		}	}/* If x is negative, require v to be an integer */sign = 1;if( x < 0.0 )	{	if( t != v )		{		mtherr( "ivf", DOMAIN );		return( 0.0 );		}	if( v != 2.0 * floorf(v/2.0) )		sign = -1;	}/* Avoid logarithm singularity */if( x == 0.0 )	{	if( v == 0.0 )		return( 1.0 );	if( v < 0.0 )		{		mtherr( "ivf", OVERFLOW );		return( MAXNUMF );		}	else		return( 0.0 );	}ax = fabsf(x);t = v * logf( 0.5 * ax )  -  x;t = sign * expf(t) / gammaf( v + 1.0 );ax = v + 0.5;return( t * hypergf( ax,  2.0 * ax,  2.0 * x ) );}
 |