123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- /* ellpjl.c
- *
- * Jacobian Elliptic Functions
- *
- *
- *
- * SYNOPSIS:
- *
- * long double u, m, sn, cn, dn, phi;
- * int ellpjl();
- *
- * ellpjl( u, m, _&sn, _&cn, _&dn, _&phi );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
- * and dn(u|m) of parameter m between 0 and 1, and real
- * argument u.
- *
- * These functions are periodic, with quarter-period on the
- * real axis equal to the complete elliptic integral
- * ellpk(1.0-m).
- *
- * Relation to incomplete elliptic integral:
- * If u = ellik(phi,m), then sn(u|m) = sin(phi),
- * and cn(u|m) = cos(phi). Phi is called the amplitude of u.
- *
- * Computation is by means of the arithmetic-geometric mean
- * algorithm, except when m is within 1e-12 of 0 or 1. In the
- * latter case with m close to 1, the approximation applies
- * only for phi < pi/2.
- *
- * ACCURACY:
- *
- * Tested at random points with u between 0 and 10, m between
- * 0 and 1.
- *
- * Absolute error (* = relative error):
- * arithmetic function # trials peak rms
- * IEEE sn 10000 1.7e-18 2.3e-19
- * IEEE cn 20000 1.6e-18 2.2e-19
- * IEEE dn 10000 4.7e-15 2.7e-17
- * IEEE phi 10000 4.0e-19* 6.6e-20*
- *
- * Accuracy deteriorates when u is large.
- *
- */
- /*
- Cephes Math Library Release 2.3: November, 1995
- Copyright 1984, 1987, 1995 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef ANSIPROT
- extern long double sqrtl ( long double );
- extern long double fabsl ( long double );
- extern long double sinl ( long double );
- extern long double cosl ( long double );
- extern long double asinl ( long double );
- extern long double tanhl ( long double );
- extern long double sinhl ( long double );
- extern long double coshl ( long double );
- extern long double atanl ( long double );
- extern long double expl ( long double );
- #else
- long double sqrtl(), fabsl(), sinl(), cosl(), asinl(), tanhl();
- long double sinhl(), coshl(), atanl(), expl();
- #endif
- extern long double PIO2L, MACHEPL;
- int ellpjl( u, m, sn, cn, dn, ph )
- long double u, m;
- long double *sn, *cn, *dn, *ph;
- {
- long double ai, b, phi, t, twon;
- long double a[9], c[9];
- int i;
- /* Check for special cases */
- if( m < 0.0L || m > 1.0L )
- {
- mtherr( "ellpjl", DOMAIN );
- *sn = 0.0L;
- *cn = 0.0L;
- *ph = 0.0L;
- *dn = 0.0L;
- return(-1);
- }
- if( m < 1.0e-12L )
- {
- t = sinl(u);
- b = cosl(u);
- ai = 0.25L * m * (u - t*b);
- *sn = t - ai*b;
- *cn = b + ai*t;
- *ph = u - ai;
- *dn = 1.0L - 0.5L*m*t*t;
- return(0);
- }
- if( m >= 0.999999999999L )
- {
- ai = 0.25L * (1.0L-m);
- b = coshl(u);
- t = tanhl(u);
- phi = 1.0L/b;
- twon = b * sinhl(u);
- *sn = t + ai * (twon - u)/(b*b);
- *ph = 2.0L*atanl(expl(u)) - PIO2L + ai*(twon - u)/b;
- ai *= t * phi;
- *cn = phi - ai * (twon - u);
- *dn = phi + ai * (twon + u);
- return(0);
- }
- /* A. G. M. scale */
- a[0] = 1.0L;
- b = sqrtl(1.0L - m);
- c[0] = sqrtl(m);
- twon = 1.0L;
- i = 0;
- while( fabsl(c[i]/a[i]) > MACHEPL )
- {
- if( i > 7 )
- {
- mtherr( "ellpjl", OVERFLOW );
- goto done;
- }
- ai = a[i];
- ++i;
- c[i] = 0.5L * ( ai - b );
- t = sqrtl( ai * b );
- a[i] = 0.5L * ( ai + b );
- b = t;
- twon *= 2.0L;
- }
- done:
- /* backward recurrence */
- phi = twon * a[i] * u;
- do
- {
- t = c[i] * sinl(phi) / a[i];
- b = phi;
- phi = 0.5L * (asinl(t) + phi);
- }
- while( --i );
- *sn = sinl(phi);
- t = cosl(phi);
- *cn = t;
- *dn = t/cosl(phi-b);
- *ph = phi;
- return(0);
- }
|