123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- /* igaml.c
- *
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * long double a, x, y, igaml();
- *
- * y = igaml( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,30 4000 4.4e-15 6.3e-16
- * IEEE 0,30 10000 3.6e-14 5.1e-15
- *
- */
- /* igamcl()
- *
- * Complemented incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * long double a, x, y, igamcl();
- *
- * y = igamcl( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- *
- * igamc(a,x) = 1 - igam(a,x)
- *
- * inf.
- * -
- * 1 | | -t a-1
- * = ----- | e t dt.
- * - | |
- * | (a) -
- * x
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,30 2000 2.7e-15 4.0e-16
- * IEEE 0,30 60000 1.4e-12 6.3e-15
- *
- */
- /*
- Cephes Math Library Release 2.3: March, 1995
- Copyright 1985, 1995 by Stephen L. Moshier
- */
- #include <math.h>
- #ifdef ANSIPROT
- extern long double lgaml ( long double );
- extern long double expl ( long double );
- extern long double logl ( long double );
- extern long double fabsl ( long double );
- extern long double gammal ( long double );
- long double igaml ( long double, long double );
- long double igamcl ( long double, long double );
- #else
- long double lgaml(), expl(), logl(), fabsl(), igaml(), gammal();
- long double igamcl();
- #endif
- #define BIG 9.223372036854775808e18L
- #define MAXGAML 1755.455L
- extern long double MACHEPL, MINLOGL;
- long double igamcl( a, x )
- long double a, x;
- {
- long double ans, c, yc, ax, y, z, r, t;
- long double pk, pkm1, pkm2, qk, qkm1, qkm2;
- if( (x <= 0.0L) || ( a <= 0.0L) )
- return( 1.0L );
- if( (x < 1.0L) || (x < a) )
- return( 1.0L - igaml(a,x) );
- ax = a * logl(x) - x - lgaml(a);
- if( ax < MINLOGL )
- {
- mtherr( "igamcl", UNDERFLOW );
- return( 0.0L );
- }
- ax = expl(ax);
- /* continued fraction */
- y = 1.0L - a;
- z = x + y + 1.0L;
- c = 0.0L;
- pkm2 = 1.0L;
- qkm2 = x;
- pkm1 = x + 1.0L;
- qkm1 = z * x;
- ans = pkm1/qkm1;
- do
- {
- c += 1.0L;
- y += 1.0L;
- z += 2.0L;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if( qk != 0.0L )
- {
- r = pk/qk;
- t = fabsl( (ans - r)/r );
- ans = r;
- }
- else
- t = 1.0L;
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if( fabsl(pk) > BIG )
- {
- pkm2 /= BIG;
- pkm1 /= BIG;
- qkm2 /= BIG;
- qkm1 /= BIG;
- }
- }
- while( t > MACHEPL );
- return( ans * ax );
- }
- /* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
- *
- */
- long double igaml( a, x )
- long double a, x;
- {
- long double ans, ax, c, r;
- if( (x <= 0.0L) || ( a <= 0.0L) )
- return( 0.0L );
- if( (x > 1.0L) && (x > a ) )
- return( 1.0L - igamcl(a,x) );
- ax = a * logl(x) - x - lgaml(a);
- if( ax < MINLOGL )
- {
- mtherr( "igaml", UNDERFLOW );
- return( 0.0L );
- }
- ax = expl(ax);
- /* power series */
- r = a;
- c = 1.0L;
- ans = 1.0L;
- do
- {
- r += 1.0L;
- c *= x/r;
- ans += c;
- }
- while( c/ans > MACHEPL );
- return( ans * ax/a );
- }
|