des.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. /*
  2. * FreeSec: libcrypt
  3. *
  4. * Copyright (c) 1994 David Burren
  5. * All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 4. Neither the name of the author nor the names of other contributors
  16. * may be used to endorse or promote products derived from this software
  17. * without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  23. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  29. * SUCH DAMAGE.
  30. *
  31. *
  32. * This is an original implementation of the DES and the crypt(3) interfaces
  33. * by David Burren <davidb@werj.com.au>.
  34. *
  35. * An excellent reference on the underlying algorithm (and related
  36. * algorithms) is:
  37. *
  38. * B. Schneier, Applied Cryptography: protocols, algorithms,
  39. * and source code in C, John Wiley & Sons, 1994.
  40. *
  41. * Note that in that book's description of DES the lookups for the initial,
  42. * pbox, and final permutations are inverted (this has been brought to the
  43. * attention of the author). A list of errata for this book has been
  44. * posted to the sci.crypt newsgroup by the author and is available for FTP.
  45. *
  46. * NOTE:
  47. * This file must copy certain chunks of crypt.c for legal reasons.
  48. * crypt.c can only export the interface crypt(), to make binaries
  49. * exportable from the USA. Hence, to also have the other crypto interfaces
  50. * available we have to copy pieces...
  51. *
  52. */
  53. #define __FORCE_GLIBC
  54. #include <sys/cdefs.h>
  55. #include <sys/types.h>
  56. #include <sys/param.h>
  57. #include <netinet/in.h>
  58. #include <pwd.h>
  59. #include <string.h>
  60. #include <crypt.h>
  61. /* Re-entrantify me -- all this junk needs to be in
  62. * struct crypt_data to make this really reentrant... */
  63. static u_char inv_key_perm[64];
  64. static u_char inv_comp_perm[56];
  65. static u_char u_sbox[8][64];
  66. static u_char u_key_perm[56];
  67. static u_char un_pbox[32];
  68. static u_int32_t en_keysl[16], en_keysr[16];
  69. static u_int32_t de_keysl[16], de_keysr[16];
  70. static u_int32_t ip_maskl[8][256], ip_maskr[8][256];
  71. static u_int32_t fp_maskl[8][256], fp_maskr[8][256];
  72. static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
  73. static u_int32_t comp_maskl[8][128], comp_maskr[8][128];
  74. static u_int32_t saltbits;
  75. /* Static stuff that stays resident and doesn't change after
  76. * being initialized, and therefore doesn't need to be made
  77. * reentrant. */
  78. static u_char init_perm[64], final_perm[64];
  79. static u_char m_sbox[4][4096];
  80. static u_int32_t psbox[4][256];
  81. /* A pile of data */
  82. static const u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  83. static const u_char IP[64] = {
  84. 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
  85. 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
  86. 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
  87. 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
  88. };
  89. static const u_char key_perm[56] = {
  90. 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
  91. 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
  92. 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
  93. 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
  94. };
  95. static const u_char key_shifts[16] = {
  96. 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
  97. };
  98. static const u_char comp_perm[48] = {
  99. 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
  100. 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
  101. 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
  102. 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
  103. };
  104. /*
  105. * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
  106. */
  107. static const u_char sbox[8][64] = {
  108. {
  109. 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
  110. 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
  111. 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
  112. 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
  113. },
  114. {
  115. 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
  116. 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
  117. 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
  118. 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
  119. },
  120. {
  121. 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
  122. 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
  123. 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
  124. 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
  125. },
  126. {
  127. 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
  128. 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
  129. 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
  130. 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
  131. },
  132. {
  133. 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
  134. 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
  135. 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
  136. 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
  137. },
  138. {
  139. 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
  140. 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
  141. 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
  142. 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
  143. },
  144. {
  145. 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
  146. 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
  147. 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
  148. 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
  149. },
  150. {
  151. 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
  152. 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
  153. 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
  154. 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
  155. }
  156. };
  157. static const u_char pbox[32] = {
  158. 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
  159. 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
  160. };
  161. static const u_int32_t bits32[32] =
  162. {
  163. 0x80000000, 0x40000000, 0x20000000, 0x10000000,
  164. 0x08000000, 0x04000000, 0x02000000, 0x01000000,
  165. 0x00800000, 0x00400000, 0x00200000, 0x00100000,
  166. 0x00080000, 0x00040000, 0x00020000, 0x00010000,
  167. 0x00008000, 0x00004000, 0x00002000, 0x00001000,
  168. 0x00000800, 0x00000400, 0x00000200, 0x00000100,
  169. 0x00000080, 0x00000040, 0x00000020, 0x00000010,
  170. 0x00000008, 0x00000004, 0x00000002, 0x00000001
  171. };
  172. static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
  173. static const u_int32_t *bits28, *bits24;
  174. static __inline int ascii_to_bin(char ch)
  175. {
  176. if (ch > 'z')
  177. return(0);
  178. if (ch >= 'a')
  179. return(ch - 'a' + 38);
  180. if (ch > 'Z')
  181. return(0);
  182. if (ch >= 'A')
  183. return(ch - 'A' + 12);
  184. if (ch > '9')
  185. return(0);
  186. if (ch >= '.')
  187. return(ch - '.');
  188. return(0);
  189. }
  190. static void des_init(void)
  191. {
  192. int i, j, b, k, inbit, obit;
  193. u_int32_t *p, *il, *ir, *fl, *fr;
  194. static int des_initialised = 0;
  195. if (des_initialised==1)
  196. return;
  197. saltbits = 0;
  198. bits24 = (bits28 = bits32 + 4) + 4;
  199. /*
  200. * Invert the S-boxes, reordering the input bits.
  201. */
  202. for (i = 0; i < 8; i++)
  203. for (j = 0; j < 64; j++) {
  204. b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
  205. u_sbox[i][j] = sbox[i][b];
  206. }
  207. /*
  208. * Convert the inverted S-boxes into 4 arrays of 8 bits.
  209. * Each will handle 12 bits of the S-box input.
  210. */
  211. for (b = 0; b < 4; b++)
  212. for (i = 0; i < 64; i++)
  213. for (j = 0; j < 64; j++)
  214. m_sbox[b][(i << 6) | j] =
  215. (u_sbox[(b << 1)][i] << 4) |
  216. u_sbox[(b << 1) + 1][j];
  217. /*
  218. * Set up the initial & final permutations into a useful form, and
  219. * initialise the inverted key permutation.
  220. */
  221. for (i = 0; i < 64; i++) {
  222. init_perm[final_perm[i] = IP[i] - 1] = i;
  223. inv_key_perm[i] = 255;
  224. }
  225. /*
  226. * Invert the key permutation and initialise the inverted key
  227. * compression permutation.
  228. */
  229. for (i = 0; i < 56; i++) {
  230. u_key_perm[i] = key_perm[i] - 1;
  231. inv_key_perm[key_perm[i] - 1] = i;
  232. inv_comp_perm[i] = 255;
  233. }
  234. /*
  235. * Invert the key compression permutation.
  236. */
  237. for (i = 0; i < 48; i++) {
  238. inv_comp_perm[comp_perm[i] - 1] = i;
  239. }
  240. /*
  241. * Set up the OR-mask arrays for the initial and final permutations,
  242. * and for the key initial and compression permutations.
  243. */
  244. for (k = 0; k < 8; k++) {
  245. for (i = 0; i < 256; i++) {
  246. *(il = &ip_maskl[k][i]) = 0;
  247. *(ir = &ip_maskr[k][i]) = 0;
  248. *(fl = &fp_maskl[k][i]) = 0;
  249. *(fr = &fp_maskr[k][i]) = 0;
  250. for (j = 0; j < 8; j++) {
  251. inbit = 8 * k + j;
  252. if (i & bits8[j]) {
  253. if ((obit = init_perm[inbit]) < 32)
  254. *il |= bits32[obit];
  255. else
  256. *ir |= bits32[obit-32];
  257. if ((obit = final_perm[inbit]) < 32)
  258. *fl |= bits32[obit];
  259. else
  260. *fr |= bits32[obit - 32];
  261. }
  262. }
  263. }
  264. for (i = 0; i < 128; i++) {
  265. *(il = &key_perm_maskl[k][i]) = 0;
  266. *(ir = &key_perm_maskr[k][i]) = 0;
  267. for (j = 0; j < 7; j++) {
  268. inbit = 8 * k + j;
  269. if (i & bits8[j + 1]) {
  270. if ((obit = inv_key_perm[inbit]) == 255)
  271. continue;
  272. if (obit < 28)
  273. *il |= bits28[obit];
  274. else
  275. *ir |= bits28[obit - 28];
  276. }
  277. }
  278. *(il = &comp_maskl[k][i]) = 0;
  279. *(ir = &comp_maskr[k][i]) = 0;
  280. for (j = 0; j < 7; j++) {
  281. inbit = 7 * k + j;
  282. if (i & bits8[j + 1]) {
  283. if ((obit=inv_comp_perm[inbit]) == 255)
  284. continue;
  285. if (obit < 24)
  286. *il |= bits24[obit];
  287. else
  288. *ir |= bits24[obit - 24];
  289. }
  290. }
  291. }
  292. }
  293. /*
  294. * Invert the P-box permutation, and convert into OR-masks for
  295. * handling the output of the S-box arrays setup above.
  296. */
  297. for (i = 0; i < 32; i++)
  298. un_pbox[pbox[i] - 1] = i;
  299. for (b = 0; b < 4; b++)
  300. for (i = 0; i < 256; i++) {
  301. *(p = &psbox[b][i]) = 0;
  302. for (j = 0; j < 8; j++) {
  303. if (i & bits8[j])
  304. *p |= bits32[un_pbox[8 * b + j]];
  305. }
  306. }
  307. des_initialised = 1;
  308. }
  309. static void setup_salt(int32_t salt)
  310. {
  311. u_int32_t obit, saltbit;
  312. int i;
  313. static int32_t old_salt = 0;
  314. if (salt == old_salt)
  315. return;
  316. old_salt = salt;
  317. saltbits = 0;
  318. saltbit = 1;
  319. obit = 0x800000;
  320. for (i = 0; i < 24; i++) {
  321. if (salt & saltbit)
  322. saltbits |= obit;
  323. saltbit <<= 1;
  324. obit >>= 1;
  325. }
  326. }
  327. static int do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out,
  328. int count, struct crypt_data *data)
  329. {
  330. /*
  331. * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
  332. */
  333. int round;
  334. u_int32_t l, r, *kl, *kr, *kl1, *kr1;
  335. u_int32_t f, r48l, r48r;
  336. #if 0
  337. u_int32_t *en_keysl = &(data->key[0]);
  338. u_int32_t *en_keysr = &(data->key[16]);
  339. u_int32_t *de_keysl = &(data->key[32]);
  340. u_int32_t *de_keysr = &(data->key[48]);
  341. #endif
  342. if (count == 0) {
  343. return(1);
  344. } else if (count > 0) {
  345. /*
  346. * Encrypting
  347. */
  348. kl1 = en_keysl;
  349. kr1 = en_keysr;
  350. } else {
  351. /*
  352. * Decrypting
  353. */
  354. count = -count;
  355. kl1 = de_keysl;
  356. kr1 = de_keysr;
  357. }
  358. /*
  359. * Do initial permutation (IP).
  360. */
  361. l = ip_maskl[0][l_in >> 24]
  362. | ip_maskl[1][(l_in >> 16) & 0xff]
  363. | ip_maskl[2][(l_in >> 8) & 0xff]
  364. | ip_maskl[3][l_in & 0xff]
  365. | ip_maskl[4][r_in >> 24]
  366. | ip_maskl[5][(r_in >> 16) & 0xff]
  367. | ip_maskl[6][(r_in >> 8) & 0xff]
  368. | ip_maskl[7][r_in & 0xff];
  369. r = ip_maskr[0][l_in >> 24]
  370. | ip_maskr[1][(l_in >> 16) & 0xff]
  371. | ip_maskr[2][(l_in >> 8) & 0xff]
  372. | ip_maskr[3][l_in & 0xff]
  373. | ip_maskr[4][r_in >> 24]
  374. | ip_maskr[5][(r_in >> 16) & 0xff]
  375. | ip_maskr[6][(r_in >> 8) & 0xff]
  376. | ip_maskr[7][r_in & 0xff];
  377. while (count--) {
  378. /*
  379. * Do each round.
  380. */
  381. kl = kl1;
  382. kr = kr1;
  383. round = 16;
  384. while (round--) {
  385. /*
  386. * Expand R to 48 bits (simulate the E-box).
  387. */
  388. r48l = ((r & 0x00000001) << 23)
  389. | ((r & 0xf8000000) >> 9)
  390. | ((r & 0x1f800000) >> 11)
  391. | ((r & 0x01f80000) >> 13)
  392. | ((r & 0x001f8000) >> 15);
  393. r48r = ((r & 0x0001f800) << 7)
  394. | ((r & 0x00001f80) << 5)
  395. | ((r & 0x000001f8) << 3)
  396. | ((r & 0x0000001f) << 1)
  397. | ((r & 0x80000000) >> 31);
  398. /*
  399. * Do salting for crypt() and friends, and
  400. * XOR with the permuted key.
  401. */
  402. f = (r48l ^ r48r) & saltbits;
  403. r48l ^= f ^ *kl++;
  404. r48r ^= f ^ *kr++;
  405. /*
  406. * Do sbox lookups (which shrink it back to 32 bits)
  407. * and do the pbox permutation at the same time.
  408. */
  409. f = psbox[0][m_sbox[0][r48l >> 12]]
  410. | psbox[1][m_sbox[1][r48l & 0xfff]]
  411. | psbox[2][m_sbox[2][r48r >> 12]]
  412. | psbox[3][m_sbox[3][r48r & 0xfff]];
  413. /*
  414. * Now that we've permuted things, complete f().
  415. */
  416. f ^= l;
  417. l = r;
  418. r = f;
  419. }
  420. r = l;
  421. l = f;
  422. }
  423. /*
  424. * Do final permutation (inverse of IP).
  425. */
  426. *l_out = fp_maskl[0][l >> 24]
  427. | fp_maskl[1][(l >> 16) & 0xff]
  428. | fp_maskl[2][(l >> 8) & 0xff]
  429. | fp_maskl[3][l & 0xff]
  430. | fp_maskl[4][r >> 24]
  431. | fp_maskl[5][(r >> 16) & 0xff]
  432. | fp_maskl[6][(r >> 8) & 0xff]
  433. | fp_maskl[7][r & 0xff];
  434. *r_out = fp_maskr[0][l >> 24]
  435. | fp_maskr[1][(l >> 16) & 0xff]
  436. | fp_maskr[2][(l >> 8) & 0xff]
  437. | fp_maskr[3][l & 0xff]
  438. | fp_maskr[4][r >> 24]
  439. | fp_maskr[5][(r >> 16) & 0xff]
  440. | fp_maskr[6][(r >> 8) & 0xff]
  441. | fp_maskr[7][r & 0xff];
  442. return(0);
  443. }
  444. static int des_setkey_r(const char *key, struct crypt_data *data)
  445. {
  446. u_int32_t k0, k1, rawkey0, rawkey1;
  447. int shifts, round;
  448. static u_int32_t old_rawkey0=0, old_rawkey1=0;
  449. #if 0
  450. u_int32_t *en_keysl = &(data->key[0]);
  451. u_int32_t *en_keysr = &(data->key[16]);
  452. u_int32_t *de_keysl = &(data->key[32]);
  453. u_int32_t *de_keysr = &(data->key[48]);
  454. #endif
  455. des_init();
  456. rawkey0 = ntohl(*(u_int32_t *) key);
  457. rawkey1 = ntohl(*(u_int32_t *) (key + 4));
  458. if ((rawkey0 | rawkey1)
  459. && rawkey0 == old_rawkey0
  460. && rawkey1 == old_rawkey1) {
  461. /*
  462. * Already setup for this key.
  463. * This optimisation fails on a zero key (which is weak and
  464. * has bad parity anyway) in order to simplify the starting
  465. * conditions.
  466. */
  467. return(0);
  468. }
  469. old_rawkey0 = rawkey0;
  470. old_rawkey1 = rawkey1;
  471. /*
  472. * Do key permutation and split into two 28-bit subkeys.
  473. */
  474. k0 = key_perm_maskl[0][rawkey0 >> 25]
  475. | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
  476. | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
  477. | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
  478. | key_perm_maskl[4][rawkey1 >> 25]
  479. | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
  480. | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
  481. | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
  482. k1 = key_perm_maskr[0][rawkey0 >> 25]
  483. | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
  484. | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
  485. | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
  486. | key_perm_maskr[4][rawkey1 >> 25]
  487. | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
  488. | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
  489. | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
  490. /*
  491. * Rotate subkeys and do compression permutation.
  492. */
  493. shifts = 0;
  494. for (round = 0; round < 16; round++) {
  495. u_int32_t t0, t1;
  496. shifts += key_shifts[round];
  497. t0 = (k0 << shifts) | (k0 >> (28 - shifts));
  498. t1 = (k1 << shifts) | (k1 >> (28 - shifts));
  499. de_keysl[15 - round] =
  500. en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
  501. | comp_maskl[1][(t0 >> 14) & 0x7f]
  502. | comp_maskl[2][(t0 >> 7) & 0x7f]
  503. | comp_maskl[3][t0 & 0x7f]
  504. | comp_maskl[4][(t1 >> 21) & 0x7f]
  505. | comp_maskl[5][(t1 >> 14) & 0x7f]
  506. | comp_maskl[6][(t1 >> 7) & 0x7f]
  507. | comp_maskl[7][t1 & 0x7f];
  508. de_keysr[15 - round] =
  509. en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
  510. | comp_maskr[1][(t0 >> 14) & 0x7f]
  511. | comp_maskr[2][(t0 >> 7) & 0x7f]
  512. | comp_maskr[3][t0 & 0x7f]
  513. | comp_maskr[4][(t1 >> 21) & 0x7f]
  514. | comp_maskr[5][(t1 >> 14) & 0x7f]
  515. | comp_maskr[6][(t1 >> 7) & 0x7f]
  516. | comp_maskr[7][t1 & 0x7f];
  517. }
  518. return(0);
  519. }
  520. static int __des_setkey_r(const char *key, struct crypt_data *data)
  521. {
  522. int i, j;
  523. u_int32_t packed_keys[2];
  524. u_char *p;
  525. p = (u_char *) packed_keys;
  526. for (i = 0; i < 8; i++) {
  527. p[i] = 0;
  528. for (j = 0; j < 8; j++)
  529. if (*key++ & 1)
  530. p[i] |= bits8[j];
  531. }
  532. return(des_setkey_r(p, data));
  533. }
  534. static int __des_encrypt_r(char *block, int flag, struct crypt_data *data)
  535. {
  536. u_int32_t io[2];
  537. u_char *p;
  538. int i, j, retval;
  539. des_init();
  540. setup_salt((int32_t)0);
  541. p = (u_char *)block;
  542. for (i = 0; i < 2; i++) {
  543. io[i] = 0L;
  544. for (j = 0; j < 32; j++)
  545. if (*p++ & 1)
  546. io[i] |= bits32[j];
  547. }
  548. retval = do_des(io[0], io[1], io, io + 1, flag ? -1 : 1, data);
  549. for (i = 0; i < 2; i++)
  550. for (j = 0; j < 32; j++)
  551. block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0;
  552. return(retval);
  553. }
  554. extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_data *data)
  555. {
  556. u_int32_t count, salt, l, r0, r1, keybuf[2];
  557. u_char *p, *q;
  558. /* This is a nice place where we can grab a bit of reentrant space...
  559. * I'd create a separate field in struct crypt_data, but this spot
  560. * should do nicely for now... */
  561. char *output = data->key.b_data;
  562. des_init();
  563. /*
  564. * Copy the key, shifting each character up by one bit
  565. * and padding with zeros.
  566. */
  567. q = (u_char *)keybuf;
  568. while (q - (u_char *)keybuf - 8) {
  569. *q++ = *key << 1;
  570. if (*(q - 1))
  571. key++;
  572. }
  573. if (des_setkey_r((char *)keybuf, data))
  574. return(NULL);
  575. #if 0
  576. if (*setting == _PASSWORD_EFMT1) {
  577. int i;
  578. /*
  579. * "new"-style:
  580. * setting - underscore, 4 bytes of count, 4 bytes of salt
  581. * key - unlimited characters
  582. */
  583. for (i = 1, count = 0L; i < 5; i++)
  584. count |= ascii_to_bin(setting[i]) << ((i - 1) * 6);
  585. for (i = 5, salt = 0L; i < 9; i++)
  586. salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6);
  587. while (*key) {
  588. /*
  589. * Encrypt the key with itself.
  590. */
  591. if (__des_encrypt_r((char *)keybuf, (char *)keybuf, 0L, 1), data)
  592. return(NULL);
  593. /*
  594. * And XOR with the next 8 characters of the key.
  595. */
  596. q = (u_char *)keybuf;
  597. while (q - (u_char *)keybuf - 8 && *key)
  598. *q++ ^= *key++ << 1;
  599. if (__des_setkey((char *)keybuf))
  600. return(NULL);
  601. }
  602. strncpy(output, setting, 9);
  603. /*
  604. * Double check that we weren't given a short setting.
  605. * If we were, the above code will probably have created
  606. * wierd values for count and salt, but we don't really care.
  607. * Just make sure the output string doesn't have an extra
  608. * NUL in it.
  609. */
  610. output[9] = '\0';
  611. p = (u_char *)output + strlen(output);
  612. } else
  613. #endif
  614. {
  615. /*
  616. * "old"-style:
  617. * setting - 2 bytes of salt
  618. * key - up to 8 characters
  619. */
  620. count = 25;
  621. salt = (ascii_to_bin(setting[1]) << 6)
  622. | ascii_to_bin(setting[0]);
  623. output[0] = setting[0];
  624. /*
  625. * If the encrypted password that the salt was extracted from
  626. * is only 1 character long, the salt will be corrupted. We
  627. * need to ensure that the output string doesn't have an extra
  628. * NUL in it!
  629. */
  630. output[1] = setting[1] ? setting[1] : output[0];
  631. p = (u_char *)output + 2;
  632. }
  633. setup_salt(salt);
  634. /*
  635. * Do it.
  636. */
  637. if (do_des(0L, 0L, &r0, &r1, (int)count, data))
  638. return(NULL);
  639. /*
  640. * Now encode the result...
  641. */
  642. l = (r0 >> 8);
  643. *p++ = ascii64[(l >> 18) & 0x3f];
  644. *p++ = ascii64[(l >> 12) & 0x3f];
  645. *p++ = ascii64[(l >> 6) & 0x3f];
  646. *p++ = ascii64[l & 0x3f];
  647. l = (r0 << 16) | ((r1 >> 16) & 0xffff);
  648. *p++ = ascii64[(l >> 18) & 0x3f];
  649. *p++ = ascii64[(l >> 12) & 0x3f];
  650. *p++ = ascii64[(l >> 6) & 0x3f];
  651. *p++ = ascii64[l & 0x3f];
  652. l = r1 << 2;
  653. *p++ = ascii64[(l >> 12) & 0x3f];
  654. *p++ = ascii64[(l >> 6) & 0x3f];
  655. *p++ = ascii64[l & 0x3f];
  656. *p = 0;
  657. return output;
  658. }
  659. #warning FIXME - setkey_r, encrypt_r, and __des_crypt_r are not really reentrant
  660. void setkey_r(const char *key, struct crypt_data *data)
  661. {
  662. __des_setkey_r(key, data);
  663. }
  664. extern void encrypt_r(char *block, int edflag, struct crypt_data *data)
  665. {
  666. __des_encrypt_r(block, edflag, data);
  667. }