123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739 |
- /* powl.c
- *
- * Power function, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, z, powl();
- *
- * z = powl( x, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes x raised to the yth power. Analytically,
- *
- * x**y = exp( y log(x) ).
- *
- * Following Cody and Waite, this program uses a lookup table
- * of 2**-i/32 and pseudo extended precision arithmetic to
- * obtain several extra bits of accuracy in both the logarithm
- * and the exponential.
- *
- *
- *
- * ACCURACY:
- *
- * The relative error of pow(x,y) can be estimated
- * by y dl ln(2), where dl is the absolute error of
- * the internally computed base 2 logarithm. At the ends
- * of the approximation interval the logarithm equal 1/32
- * and its relative error is about 1 lsb = 1.1e-19. Hence
- * the predicted relative error in the result is 2.3e-21 y .
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- *
- * IEEE +-1000 40000 2.8e-18 3.7e-19
- * .001 < x < 1000, with log(x) uniformly distributed.
- * -1000 < y < 1000, y uniformly distributed.
- *
- * IEEE 0,8700 60000 6.5e-18 1.0e-18
- * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * pow overflow x**y > MAXNUM INFINITY
- * pow underflow x**y < 1/MAXNUM 0.0
- * pow domain x<0 and y noninteger 0.0
- *
- */
- /*
- Cephes Math Library Release 2.7: May, 1998
- Copyright 1984, 1991, 1998 by Stephen L. Moshier
- */
- #include <math.h>
- static char fname[] = {"powl"};
- /* Table size */
- #define NXT 32
- /* log2(Table size) */
- #define LNXT 5
- #ifdef UNK
- /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
- * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
- */
- static long double P[] = {
- 8.3319510773868690346226E-4L,
- 4.9000050881978028599627E-1L,
- 1.7500123722550302671919E0L,
- 1.4000100839971580279335E0L,
- };
- static long double Q[] = {
- /* 1.0000000000000000000000E0L,*/
- 5.2500282295834889175431E0L,
- 8.4000598057587009834666E0L,
- 4.2000302519914740834728E0L,
- };
- /* A[i] = 2^(-i/32), rounded to IEEE long double precision.
- * If i is even, A[i] + B[i/2] gives additional accuracy.
- */
- static long double A[33] = {
- 1.0000000000000000000000E0L,
- 9.7857206208770013448287E-1L,
- 9.5760328069857364691013E-1L,
- 9.3708381705514995065011E-1L,
- 9.1700404320467123175367E-1L,
- 8.9735453750155359320742E-1L,
- 8.7812608018664974155474E-1L,
- 8.5930964906123895780165E-1L,
- 8.4089641525371454301892E-1L,
- 8.2287773907698242225554E-1L,
- 8.0524516597462715409607E-1L,
- 7.8799042255394324325455E-1L,
- 7.7110541270397041179298E-1L,
- 7.5458221379671136985669E-1L,
- 7.3841307296974965571198E-1L,
- 7.2259040348852331001267E-1L,
- 7.0710678118654752438189E-1L,
- 6.9195494098191597746178E-1L,
- 6.7712777346844636413344E-1L,
- 6.6261832157987064729696E-1L,
- 6.4841977732550483296079E-1L,
- 6.3452547859586661129850E-1L,
- 6.2092890603674202431705E-1L,
- 6.0762367999023443907803E-1L,
- 5.9460355750136053334378E-1L,
- 5.8186242938878875689693E-1L,
- 5.6939431737834582684856E-1L,
- 5.5719337129794626814472E-1L,
- 5.4525386633262882960438E-1L,
- 5.3357020033841180906486E-1L,
- 5.2213689121370692017331E-1L,
- 5.1094857432705833910408E-1L,
- 5.0000000000000000000000E-1L,
- };
- static long double B[17] = {
- 0.0000000000000000000000E0L,
- 2.6176170809902549338711E-20L,
- -1.0126791927256478897086E-20L,
- 1.3438228172316276937655E-21L,
- 1.2207982955417546912101E-20L,
- -6.3084814358060867200133E-21L,
- 1.3164426894366316434230E-20L,
- -1.8527916071632873716786E-20L,
- 1.8950325588932570796551E-20L,
- 1.5564775779538780478155E-20L,
- 6.0859793637556860974380E-21L,
- -2.0208749253662532228949E-20L,
- 1.4966292219224761844552E-20L,
- 3.3540909728056476875639E-21L,
- -8.6987564101742849540743E-22L,
- -1.2327176863327626135542E-20L,
- 0.0000000000000000000000E0L,
- };
- /* 2^x = 1 + x P(x),
- * on the interval -1/32 <= x <= 0
- */
- static long double R[] = {
- 1.5089970579127659901157E-5L,
- 1.5402715328927013076125E-4L,
- 1.3333556028915671091390E-3L,
- 9.6181291046036762031786E-3L,
- 5.5504108664798463044015E-2L,
- 2.4022650695910062854352E-1L,
- 6.9314718055994530931447E-1L,
- };
- #define douba(k) A[k]
- #define doubb(k) B[k]
- #define MEXP (NXT*16384.0L)
- /* The following if denormal numbers are supported, else -MEXP: */
- #ifdef DENORMAL
- #define MNEXP (-NXT*(16384.0L+64.0L))
- #else
- #define MNEXP (-NXT*16384.0L)
- #endif
- /* log2(e) - 1 */
- #define LOG2EA 0.44269504088896340735992L
- #endif
- #ifdef IBMPC
- static short P[] = {
- 0xb804,0xa8b7,0xc6f4,0xda6a,0x3ff4, XPD
- 0x7de9,0xcf02,0x58c0,0xfae1,0x3ffd, XPD
- 0x405a,0x3722,0x67c9,0xe000,0x3fff, XPD
- 0xcd99,0x6b43,0x87ca,0xb333,0x3fff, XPD
- };
- static short Q[] = {
- /* 0x0000,0x0000,0x0000,0x8000,0x3fff, */
- 0x6307,0xa469,0x3b33,0xa800,0x4001, XPD
- 0xfec2,0x62d7,0xa51c,0x8666,0x4002, XPD
- 0xda32,0xd072,0xa5d7,0x8666,0x4001, XPD
- };
- static short A[] = {
- 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
- 0x033a,0x722a,0xb2db,0xfa83,0x3ffe, XPD
- 0xcc2c,0x2486,0x7d15,0xf525,0x3ffe, XPD
- 0xf5cb,0xdcda,0xb99b,0xefe4,0x3ffe, XPD
- 0x392f,0xdd24,0xc6e7,0xeac0,0x3ffe, XPD
- 0x48a8,0x7c83,0x06e7,0xe5b9,0x3ffe, XPD
- 0xe111,0x2a94,0xdeec,0xe0cc,0x3ffe, XPD
- 0x3755,0xdaf2,0xb797,0xdbfb,0x3ffe, XPD
- 0x6af4,0xd69d,0xfcca,0xd744,0x3ffe, XPD
- 0xe45a,0xf12a,0x1d91,0xd2a8,0x3ffe, XPD
- 0x80e4,0x1f84,0x8c15,0xce24,0x3ffe, XPD
- 0x27a3,0x6e2f,0xbd86,0xc9b9,0x3ffe, XPD
- 0xdadd,0x5506,0x2a11,0xc567,0x3ffe, XPD
- 0x9456,0x6670,0x4cca,0xc12c,0x3ffe, XPD
- 0x36bf,0x580c,0xa39f,0xbd08,0x3ffe, XPD
- 0x9ee9,0x62fb,0xaf47,0xb8fb,0x3ffe, XPD
- 0x6484,0xf9de,0xf333,0xb504,0x3ffe, XPD
- 0x2590,0xd2ac,0xf581,0xb123,0x3ffe, XPD
- 0x4ac6,0x42a1,0x3eea,0xad58,0x3ffe, XPD
- 0x0ef8,0xea7c,0x5ab4,0xa9a1,0x3ffe, XPD
- 0x38ea,0xb151,0xd6a9,0xa5fe,0x3ffe, XPD
- 0x6819,0x0c49,0x4303,0xa270,0x3ffe, XPD
- 0x11ae,0x91a1,0x3260,0x9ef5,0x3ffe, XPD
- 0x5539,0xd54e,0x39b9,0x9b8d,0x3ffe, XPD
- 0xa96f,0x8db8,0xf051,0x9837,0x3ffe, XPD
- 0x0961,0xfef7,0xefa8,0x94f4,0x3ffe, XPD
- 0xc336,0xab11,0xd373,0x91c3,0x3ffe, XPD
- 0x53c0,0x45cd,0x398b,0x8ea4,0x3ffe, XPD
- 0xd6e7,0xea8b,0xc1e3,0x8b95,0x3ffe, XPD
- 0x8527,0x92da,0x0e80,0x8898,0x3ffe, XPD
- 0x7b15,0xcc48,0xc367,0x85aa,0x3ffe, XPD
- 0xa1d7,0xac2b,0x8698,0x82cd,0x3ffe, XPD
- 0x0000,0x0000,0x0000,0x8000,0x3ffe, XPD
- };
- static short B[] = {
- 0x0000,0x0000,0x0000,0x0000,0x0000, XPD
- 0x1f87,0xdb30,0x18f5,0xf73a,0x3fbd, XPD
- 0xac15,0x3e46,0x2932,0xbf4a,0xbfbc, XPD
- 0x7944,0xba66,0xa091,0xcb12,0x3fb9, XPD
- 0xff78,0x40b4,0x2ee6,0xe69a,0x3fbc, XPD
- 0xc895,0x5069,0xe383,0xee53,0xbfbb, XPD
- 0x7cde,0x9376,0x4325,0xf8ab,0x3fbc, XPD
- 0xa10c,0x25e0,0xc093,0xaefd,0xbfbd, XPD
- 0x7d3e,0xea95,0x1366,0xb2fb,0x3fbd, XPD
- 0x5d89,0xeb34,0x5191,0x9301,0x3fbd, XPD
- 0x80d9,0xb883,0xfb10,0xe5eb,0x3fbb, XPD
- 0x045d,0x288c,0xc1ec,0xbedd,0xbfbd, XPD
- 0xeded,0x5c85,0x4630,0x8d5a,0x3fbd, XPD
- 0x9d82,0xe5ac,0x8e0a,0xfd6d,0x3fba, XPD
- 0x6dfd,0xeb58,0xaf14,0x8373,0xbfb9, XPD
- 0xf938,0x7aac,0x91cf,0xe8da,0xbfbc, XPD
- 0x0000,0x0000,0x0000,0x0000,0x0000, XPD
- };
- static short R[] = {
- 0xa69b,0x530e,0xee1d,0xfd2a,0x3fee, XPD
- 0xc746,0x8e7e,0x5960,0xa182,0x3ff2, XPD
- 0x63b6,0xadda,0xfd6a,0xaec3,0x3ff5, XPD
- 0xc104,0xfd99,0x5b7c,0x9d95,0x3ff8, XPD
- 0xe05e,0x249d,0x46b8,0xe358,0x3ffa, XPD
- 0x5d1d,0x162c,0xeffc,0xf5fd,0x3ffc, XPD
- 0x79aa,0xd1cf,0x17f7,0xb172,0x3ffe, XPD
- };
- /* 10 byte sizes versus 12 byte */
- #define douba(k) (*(long double *)(&A[(sizeof( long double )/2)*(k)]))
- #define doubb(k) (*(long double *)(&B[(sizeof( long double )/2)*(k)]))
- #define MEXP (NXT*16384.0L)
- #ifdef DENORMAL
- #define MNEXP (-NXT*(16384.0L+64.0L))
- #else
- #define MNEXP (-NXT*16384.0L)
- #endif
- static short L[] = {0xc2ef,0x705f,0xeca5,0xe2a8,0x3ffd, XPD};
- #define LOG2EA (*(long double *)(&L[0]))
- #endif
- #ifdef MIEEE
- static long P[] = {
- 0x3ff40000,0xda6ac6f4,0xa8b7b804,
- 0x3ffd0000,0xfae158c0,0xcf027de9,
- 0x3fff0000,0xe00067c9,0x3722405a,
- 0x3fff0000,0xb33387ca,0x6b43cd99,
- };
- static long Q[] = {
- /* 0x3fff0000,0x80000000,0x00000000, */
- 0x40010000,0xa8003b33,0xa4696307,
- 0x40020000,0x8666a51c,0x62d7fec2,
- 0x40010000,0x8666a5d7,0xd072da32,
- };
- static long A[] = {
- 0x3fff0000,0x80000000,0x00000000,
- 0x3ffe0000,0xfa83b2db,0x722a033a,
- 0x3ffe0000,0xf5257d15,0x2486cc2c,
- 0x3ffe0000,0xefe4b99b,0xdcdaf5cb,
- 0x3ffe0000,0xeac0c6e7,0xdd24392f,
- 0x3ffe0000,0xe5b906e7,0x7c8348a8,
- 0x3ffe0000,0xe0ccdeec,0x2a94e111,
- 0x3ffe0000,0xdbfbb797,0xdaf23755,
- 0x3ffe0000,0xd744fcca,0xd69d6af4,
- 0x3ffe0000,0xd2a81d91,0xf12ae45a,
- 0x3ffe0000,0xce248c15,0x1f8480e4,
- 0x3ffe0000,0xc9b9bd86,0x6e2f27a3,
- 0x3ffe0000,0xc5672a11,0x5506dadd,
- 0x3ffe0000,0xc12c4cca,0x66709456,
- 0x3ffe0000,0xbd08a39f,0x580c36bf,
- 0x3ffe0000,0xb8fbaf47,0x62fb9ee9,
- 0x3ffe0000,0xb504f333,0xf9de6484,
- 0x3ffe0000,0xb123f581,0xd2ac2590,
- 0x3ffe0000,0xad583eea,0x42a14ac6,
- 0x3ffe0000,0xa9a15ab4,0xea7c0ef8,
- 0x3ffe0000,0xa5fed6a9,0xb15138ea,
- 0x3ffe0000,0xa2704303,0x0c496819,
- 0x3ffe0000,0x9ef53260,0x91a111ae,
- 0x3ffe0000,0x9b8d39b9,0xd54e5539,
- 0x3ffe0000,0x9837f051,0x8db8a96f,
- 0x3ffe0000,0x94f4efa8,0xfef70961,
- 0x3ffe0000,0x91c3d373,0xab11c336,
- 0x3ffe0000,0x8ea4398b,0x45cd53c0,
- 0x3ffe0000,0x8b95c1e3,0xea8bd6e7,
- 0x3ffe0000,0x88980e80,0x92da8527,
- 0x3ffe0000,0x85aac367,0xcc487b15,
- 0x3ffe0000,0x82cd8698,0xac2ba1d7,
- 0x3ffe0000,0x80000000,0x00000000,
- };
- static long B[51] = {
- 0x00000000,0x00000000,0x00000000,
- 0x3fbd0000,0xf73a18f5,0xdb301f87,
- 0xbfbc0000,0xbf4a2932,0x3e46ac15,
- 0x3fb90000,0xcb12a091,0xba667944,
- 0x3fbc0000,0xe69a2ee6,0x40b4ff78,
- 0xbfbb0000,0xee53e383,0x5069c895,
- 0x3fbc0000,0xf8ab4325,0x93767cde,
- 0xbfbd0000,0xaefdc093,0x25e0a10c,
- 0x3fbd0000,0xb2fb1366,0xea957d3e,
- 0x3fbd0000,0x93015191,0xeb345d89,
- 0x3fbb0000,0xe5ebfb10,0xb88380d9,
- 0xbfbd0000,0xbeddc1ec,0x288c045d,
- 0x3fbd0000,0x8d5a4630,0x5c85eded,
- 0x3fba0000,0xfd6d8e0a,0xe5ac9d82,
- 0xbfb90000,0x8373af14,0xeb586dfd,
- 0xbfbc0000,0xe8da91cf,0x7aacf938,
- 0x00000000,0x00000000,0x00000000,
- };
- static long R[] = {
- 0x3fee0000,0xfd2aee1d,0x530ea69b,
- 0x3ff20000,0xa1825960,0x8e7ec746,
- 0x3ff50000,0xaec3fd6a,0xadda63b6,
- 0x3ff80000,0x9d955b7c,0xfd99c104,
- 0x3ffa0000,0xe35846b8,0x249de05e,
- 0x3ffc0000,0xf5fdeffc,0x162c5d1d,
- 0x3ffe0000,0xb17217f7,0xd1cf79aa,
- };
- #define douba(k) (*(long double *)&A[3*(k)])
- #define doubb(k) (*(long double *)&B[3*(k)])
- #define MEXP (NXT*16384.0L)
- #ifdef DENORMAL
- #define MNEXP (-NXT*(16384.0L+64.0L))
- #else
- #define MNEXP (-NXT*16382.0L)
- #endif
- static long L[3] = {0x3ffd0000,0xe2a8eca5,0x705fc2ef};
- #define LOG2EA (*(long double *)(&L[0]))
- #endif
- #define F W
- #define Fa Wa
- #define Fb Wb
- #define G W
- #define Ga Wa
- #define Gb u
- #define H W
- #define Ha Wb
- #define Hb Wb
- extern long double MAXNUML;
- static VOLATILE long double z;
- static long double w, W, Wa, Wb, ya, yb, u;
- #ifdef ANSIPROT
- extern long double floorl ( long double );
- extern long double fabsl ( long double );
- extern long double frexpl ( long double, int * );
- extern long double ldexpl ( long double, int );
- extern long double polevll ( long double, void *, int );
- extern long double p1evll ( long double, void *, int );
- extern long double powil ( long double, int );
- extern int isnanl ( long double );
- extern int isfinitel ( long double );
- static long double reducl( long double );
- extern int signbitl ( long double );
- #else
- long double floorl(), fabsl(), frexpl(), ldexpl();
- long double polevll(), p1evll(), powil();
- static long double reducl();
- int isnanl(), isfinitel(), signbitl();
- #endif
- #ifdef INFINITIES
- extern long double INFINITYL;
- #else
- #define INFINITYL MAXNUML
- #endif
- #ifdef NANS
- extern long double NANL;
- #endif
- #ifdef MINUSZERO
- extern long double NEGZEROL;
- #endif
- long double powl( x, y )
- long double x, y;
- {
- /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
- int i, nflg, iyflg, yoddint;
- long e;
- if( y == 0.0L )
- return( 1.0L );
- #ifdef NANS
- if( isnanl(x) )
- return( x );
- if( isnanl(y) )
- return( y );
- #endif
- if( y == 1.0L )
- return( x );
- #ifdef INFINITIES
- if( !isfinitel(y) && (x == -1.0L || x == 1.0L) )
- {
- mtherr( "powl", DOMAIN );
- #ifdef NANS
- return( NANL );
- #else
- return( INFINITYL );
- #endif
- }
- #endif
- if( x == 1.0L )
- return( 1.0L );
- if( y >= MAXNUML )
- {
- #ifdef INFINITIES
- if( x > 1.0L )
- return( INFINITYL );
- #else
- if( x > 1.0L )
- return( MAXNUML );
- #endif
- if( x > 0.0L && x < 1.0L )
- return( 0.0L );
- #ifdef INFINITIES
- if( x < -1.0L )
- return( INFINITYL );
- #else
- if( x < -1.0L )
- return( MAXNUML );
- #endif
- if( x > -1.0L && x < 0.0L )
- return( 0.0L );
- }
- if( y <= -MAXNUML )
- {
- if( x > 1.0L )
- return( 0.0L );
- #ifdef INFINITIES
- if( x > 0.0L && x < 1.0L )
- return( INFINITYL );
- #else
- if( x > 0.0L && x < 1.0L )
- return( MAXNUML );
- #endif
- if( x < -1.0L )
- return( 0.0L );
- #ifdef INFINITIES
- if( x > -1.0L && x < 0.0L )
- return( INFINITYL );
- #else
- if( x > -1.0L && x < 0.0L )
- return( MAXNUML );
- #endif
- }
- if( x >= MAXNUML )
- {
- #if INFINITIES
- if( y > 0.0L )
- return( INFINITYL );
- #else
- if( y > 0.0L )
- return( MAXNUML );
- #endif
- return( 0.0L );
- }
- w = floorl(y);
- /* Set iyflg to 1 if y is an integer. */
- iyflg = 0;
- if( w == y )
- iyflg = 1;
- /* Test for odd integer y. */
- yoddint = 0;
- if( iyflg )
- {
- ya = fabsl(y);
- ya = floorl(0.5L * ya);
- yb = 0.5L * fabsl(w);
- if( ya != yb )
- yoddint = 1;
- }
- if( x <= -MAXNUML )
- {
- if( y > 0.0L )
- {
- #ifdef INFINITIES
- if( yoddint )
- return( -INFINITYL );
- return( INFINITYL );
- #else
- if( yoddint )
- return( -MAXNUML );
- return( MAXNUML );
- #endif
- }
- if( y < 0.0L )
- {
- #ifdef MINUSZERO
- if( yoddint )
- return( NEGZEROL );
- #endif
- return( 0.0 );
- }
- }
- nflg = 0; /* flag = 1 if x<0 raised to integer power */
- if( x <= 0.0L )
- {
- if( x == 0.0L )
- {
- if( y < 0.0 )
- {
- #ifdef MINUSZERO
- if( signbitl(x) && yoddint )
- return( -INFINITYL );
- #endif
- #ifdef INFINITIES
- return( INFINITYL );
- #else
- return( MAXNUML );
- #endif
- }
- if( y > 0.0 )
- {
- #ifdef MINUSZERO
- if( signbitl(x) && yoddint )
- return( NEGZEROL );
- #endif
- return( 0.0 );
- }
- if( y == 0.0L )
- return( 1.0L ); /* 0**0 */
- else
- return( 0.0L ); /* 0**y */
- }
- else
- {
- if( iyflg == 0 )
- { /* noninteger power of negative number */
- mtherr( fname, DOMAIN );
- #ifdef NANS
- return(NANL);
- #else
- return(0.0L);
- #endif
- }
- nflg = 1;
- }
- }
- /* Integer power of an integer. */
- if( iyflg )
- {
- i = w;
- w = floorl(x);
- if( (w == x) && (fabsl(y) < 32768.0) )
- {
- w = powil( x, (int) y );
- return( w );
- }
- }
- if( nflg )
- x = fabsl(x);
- /* separate significand from exponent */
- x = frexpl( x, &i );
- e = i;
- /* find significand in antilog table A[] */
- i = 1;
- if( x <= douba(17) )
- i = 17;
- if( x <= douba(i+8) )
- i += 8;
- if( x <= douba(i+4) )
- i += 4;
- if( x <= douba(i+2) )
- i += 2;
- if( x >= douba(1) )
- i = -1;
- i += 1;
- /* Find (x - A[i])/A[i]
- * in order to compute log(x/A[i]):
- *
- * log(x) = log( a x/a ) = log(a) + log(x/a)
- *
- * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
- */
- x -= douba(i);
- x -= doubb(i/2);
- x /= douba(i);
- /* rational approximation for log(1+v):
- *
- * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
- */
- z = x*x;
- w = x * ( z * polevll( x, P, 3 ) / p1evll( x, Q, 3 ) );
- w = w - ldexpl( z, -1 ); /* w - 0.5 * z */
- /* Convert to base 2 logarithm:
- * multiply by log2(e) = 1 + LOG2EA
- */
- z = LOG2EA * w;
- z += w;
- z += LOG2EA * x;
- z += x;
- /* Compute exponent term of the base 2 logarithm. */
- w = -i;
- w = ldexpl( w, -LNXT ); /* divide by NXT */
- w += e;
- /* Now base 2 log of x is w + z. */
- /* Multiply base 2 log by y, in extended precision. */
- /* separate y into large part ya
- * and small part yb less than 1/NXT
- */
- ya = reducl(y);
- yb = y - ya;
- /* (w+z)(ya+yb)
- * = w*ya + w*yb + z*y
- */
- F = z * y + w * yb;
- Fa = reducl(F);
- Fb = F - Fa;
- G = Fa + w * ya;
- Ga = reducl(G);
- Gb = G - Ga;
- H = Fb + Gb;
- Ha = reducl(H);
- w = ldexpl( Ga+Ha, LNXT );
- /* Test the power of 2 for overflow */
- if( w > MEXP )
- {
- /* printf( "w = %.4Le ", w ); */
- mtherr( fname, OVERFLOW );
- return( MAXNUML );
- }
- if( w < MNEXP )
- {
- /* printf( "w = %.4Le ", w ); */
- mtherr( fname, UNDERFLOW );
- return( 0.0L );
- }
- e = w;
- Hb = H - Ha;
- if( Hb > 0.0L )
- {
- e += 1;
- Hb -= (1.0L/NXT); /*0.0625L;*/
- }
- /* Now the product y * log2(x) = Hb + e/NXT.
- *
- * Compute base 2 exponential of Hb,
- * where -0.0625 <= Hb <= 0.
- */
- z = Hb * polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */
- /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
- * Find lookup table entry for the fractional power of 2.
- */
- if( e < 0 )
- i = 0;
- else
- i = 1;
- i = e/NXT + i;
- e = NXT*i - e;
- w = douba( e );
- z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
- z = z + w;
- z = ldexpl( z, i ); /* multiply by integer power of 2 */
- if( nflg )
- {
- /* For negative x,
- * find out if the integer exponent
- * is odd or even.
- */
- w = ldexpl( y, -1 );
- w = floorl(w);
- w = ldexpl( w, 1 );
- if( w != y )
- z = -z; /* odd exponent */
- }
- return( z );
- }
- /* Find a multiple of 1/NXT that is within 1/NXT of x. */
- static long double reducl(x)
- long double x;
- {
- long double t;
- t = ldexpl( x, LNXT );
- t = floorl( t );
- t = ldexpl( t, -LNXT );
- return(t);
- }
|