| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 | /* @(#)s_expm1.c 5.1 93/09/24 *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice  * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";#endif/* expm1(x) * Returns exp(x)-1, the exponential of x minus 1. * * Method *   1. Argument reduction: *	Given x, find r and integer k such that * *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658   * *      Here a correction term c will be computed to compensate  *	the error in r when rounded to a floating-point number. * *   2. Approximating expm1(r) by a special rational function on *	the interval [0,0.34658]: *	Since *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... *	we define R1(r*r) by *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) *	That is, *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... *      We use a special Reme algorithm on [0,0.347] to generate  * 	a polynomial of degree 5 in r*r to approximate R1. The  *	maximum error of this polynomial approximation is bounded  *	by 2**-61. In other words, *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 *	where 	Q1  =  -1.6666666666666567384E-2, * 		Q2  =   3.9682539681370365873E-4, * 		Q3  =  -9.9206344733435987357E-6, * 		Q4  =   2.5051361420808517002E-7, * 		Q5  =  -6.2843505682382617102E-9; *  	(where z=r*r, and the values of Q1 to Q5 are listed below) *	with error bounded by *	    |                  5           |     -61 *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2  *	    |                              | *	 *	expm1(r) = exp(r)-1 is then computed by the following  * 	specific way which minimize the accumulation rounding error:  *			       2     3 *			      r     r    [ 3 - (R1 + R1*r/2)  ] *	      expm1(r) = r + --- + --- * [--------------------] *		              2     2    [ 6 - r*(3 - R1*r/2) ] *	 *	To compensate the error in the argument reduction, we use *		expm1(r+c) = expm1(r) + c + expm1(r)*c  *			   ~ expm1(r) + c + r*c  *	Thus c+r*c will be added in as the correction terms for *	expm1(r+c). Now rearrange the term to avoid optimization  * 	screw up: *		        (      2                                    2 ) *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  ) *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  ) *                      (                                             ) *    	 *		   = r - E *   3. Scale back to obtain expm1(x): *	From step 1, we have *	   expm1(x) = either 2^k*[expm1(r)+1] - 1 *		    = or     2^k*[expm1(r) + (1-2^-k)] *   4. Implementation notes: *	(A). To save one multiplication, we scale the coefficient Qi *	     to Qi*2^i, and replace z by (x^2)/2. *	(B). To achieve maximum accuracy, we compute expm1(x) by *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf) *	  (ii)  if k=0, return r-E *	  (iii) if k=-1, return 0.5*(r-E)-0.5 *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E) *	       	       else	     return  1.0+2.0*(r-E); *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else *	  (vii) return 2^k(1-((E+2^-k)-r))  * * Special cases: *	expm1(INF) is INF, expm1(NaN) is NaN; *	expm1(-INF) is -1, and *	for finite argument, only expm1(0)=0 is exact. * * Accuracy: *	according to an error analysis, the error is always less than *	1 ulp (unit in the last place). * * Misc. info. *	For IEEE double  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow * * Constants: * The hexadecimal values are the intended ones for the following  * constants. The decimal values may be used, provided that the  * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */#include "math.h"#include "math_private.h"#ifdef __STDC__static const double#elsestatic double#endifone		= 1.0,huge		= 1.0e+300,tiny		= 1.0e-300,o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */	/* scaled coefficients related to expm1 */Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */#ifdef __STDC__	double expm1(double x)#else	double expm1(x)	double x;#endif{	double y,hi,lo,c=0,t,e,hxs,hfx,r1;	int32_t k,xsb;	u_int32_t hx;	GET_HIGH_WORD(hx,x);	xsb = hx&0x80000000;		/* sign bit of x */	if(xsb==0) y=x; else y= -x;	/* y = |x| */	hx &= 0x7fffffff;		/* high word of |x| */    /* filter out huge and non-finite argument */	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */                if(hx>=0x7ff00000) {		    u_int32_t low;		    GET_LOW_WORD(low,x);		    if(((hx&0xfffff)|low)!=0) 		         return x+x; 	 /* NaN */		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */	        }	        if(x > o_threshold) return huge*huge; /* overflow */	    }	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */		if(x+tiny<0.0)		/* raise inexact */		return tiny-one;	/* return -1 */	    }	}    /* argument reduction */	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */		if(xsb==0)		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}		else		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}	    } else {		k  = invln2*x+((xsb==0)?0.5:-0.5);		t  = k;		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */		lo = t*ln2_lo;	    }	    x  = hi - lo;	    c  = (hi-x)-lo;	} 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */	    t = huge+x;	/* return x with inexact flags when x!=0 */	    return x - (t-(huge+x));		}	else k = 0;    /* x is now in primary range */	hfx = 0.5*x;	hxs = x*hfx;	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));	t  = 3.0-r1*hfx;	e  = hxs*((r1-t)/(6.0 - x*t));	if(k==0) return x - (x*e-hxs);		/* c is 0 */	else {	    e  = (x*(e-c)-c);	    e -= hxs;	    if(k== -1) return 0.5*(x-e)-0.5;	    if(k==1) { 	       	if(x < -0.25) return -2.0*(e-(x+0.5));	       	else 	      return  one+2.0*(x-e);	    }	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */	        u_int32_t high;	        y = one-(e-x);		GET_HIGH_WORD(high,y);		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */	        return y-one;	    }	    t = one;	    if(k<20) {	        u_int32_t high;	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */	       	y = t-(e-x);		GET_HIGH_WORD(high,y);		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */	   } else {	        u_int32_t high;		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */	       	y = x-(e+t);	       	y += one;		GET_HIGH_WORD(high,y);		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */	    }	}	return y;}
 |