| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 | /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* __ieee754_hypot(x,y) * * Method : *	If (assume round-to-nearest) z=x*x+y*y *	has error less than sqrt(2)/2 ulp, than *	sqrt(z) has error less than 1 ulp (exercise). * *	So, compute sqrt(x*x+y*y) with some care as *	follows to get the error below 1 ulp: * *	Assume x>y>0; *	(if possible, set rounding to round-to-nearest) *	1. if x > 2y  use *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else *	2. if x <= 2y use *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, *	y1= y with lower 32 bits chopped, y2 = y-y1. * *	NOTE: scaling may be necessary if some argument is too *	      large or too tiny * * Special cases: *	hypot(x,y) is INF if x or y is +INF or -INF; else *	hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * 	hypot(x,y) returns sqrt(x^2+y^2) with error less * 	than 1 ulps (units in the last place) */#include "math.h"#include "math_private.h"double attribute_hidden __ieee754_hypot(double x, double y){	double a=x,b=y,t1,t2,y1,y2,w;	int32_t j,k,ha,hb;	GET_HIGH_WORD(ha,x);	ha &= 0x7fffffff;	GET_HIGH_WORD(hb,y);	hb &= 0x7fffffff;	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}	SET_HIGH_WORD(a,ha);	/* a <- |a| */	SET_HIGH_WORD(b,hb);	/* b <- |b| */	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */	k=0;	if(ha > 0x5f300000) {	/* a>2**500 */	   if(ha >= 0x7ff00000) {	/* Inf or NaN */	       u_int32_t low;	       w = a+b;			/* for sNaN */	       GET_LOW_WORD(low,a);	       if(((ha&0xfffff)|low)==0) w = a;	       GET_LOW_WORD(low,b);	       if(((hb^0x7ff00000)|low)==0) w = b;	       return w;	   }	   /* scale a and b by 2**-600 */	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;	   SET_HIGH_WORD(a,ha);	   SET_HIGH_WORD(b,hb);	}	if(hb < 0x20b00000) {	/* b < 2**-500 */	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */	        u_int32_t low;		GET_LOW_WORD(low,b);		if((hb|low)==0) return a;		t1=0;		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */		b *= t1;		a *= t1;		k -= 1022;	    } else {		/* scale a and b by 2^600 */	        ha += 0x25800000; 	/* a *= 2^600 */		hb += 0x25800000;	/* b *= 2^600 */		k -= 600;		SET_HIGH_WORD(a,ha);		SET_HIGH_WORD(b,hb);	    }	}    /* medium size a and b */	w = a-b;	if (w>b) {	    t1 = 0;	    SET_HIGH_WORD(t1,ha);	    t2 = a-t1;	    w  = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));	} else {	    a  = a+a;	    y1 = 0;	    SET_HIGH_WORD(y1,hb);	    y2 = b - y1;	    t1 = 0;	    SET_HIGH_WORD(t1,ha+0x00100000);	    t2 = a - t1;	    w  = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));	}	if(k!=0) {	    u_int32_t high;	    t1 = 1.0;	    GET_HIGH_WORD(high,t1);	    SET_HIGH_WORD(t1,high+(k<<20));	    return t1*w;	} else return w;}/* * wrapper hypot(x,y) */#ifndef _IEEE_LIBMdouble hypot(double x, double y){	double z = __ieee754_hypot(x, y);	if (_LIB_VERSION == _IEEE_)		return z;	if ((!isfinite(z)) && isfinite(x) && isfinite(y))		return __kernel_standard(x, y, 4); /* hypot overflow */	return z;}#elsestrong_alias(__ieee754_hypot, hypot)#endiflibm_hidden_def(hypot)
 |